精英家教网 > 高中数学 > 题目详情
给出下列五个命题:
①若4a=3,log45=b,则
②函数的单调递减区间是[1,+∞);
③m≥-1,则函数y=lg(x2-2x-m)的值域为R;
④若映射f:A→B为单调函数,则对于任意b∈B,它至多有一个原象;
⑤函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则f(e3)=3.
其中正确的命题是    (把你认为正确的命题序号都填在横线上)
【答案】分析:由已知可得log43=a,log45=b,结合对数的运算性质,可判断①的真假;
根据指数函数的单调性,二次函数的单调性及复合函数“同增异减”的原则,可判断②的真假;
由于对数函数值域是R,则只需让真数取遍(0,+∞)内的所有实数即可,即需让(0,+∞)为函数t=x2-2x-m值域的子集,求出m的范围可判断③的真假.
根据单调函数的图象和性质及函数一一映射的定义,可判断④的真假
根据同底的指数函数和对数函数互为反函数,图象关于直线y=x对称,求出函数y=f(x)的解析式,代入求值,可判断⑤的真假.
解答:解:由4a=3可得log43=a,结合log45=b,可得=log49-log45=2log43-log45=2a-b,故①错误;
函数y=0.5u为减函数,函数u=1+2x-x2在区间[1,+∞)上也为减函数,根据复合函数“同增异减”的原则,可得函数在区间[1,+∞)上为增函数,故②错误;
由于对数函数y=lg(x2-2x-m)的值域是R,则需让真数t=x2-2x-m的值取遍(0,+∞)内的所有实数,即△=4+4m≥0,解得m≥-1,故③正确.
对于④,根据单调函数的定义知函数必为一一映射,反之,由一一映射确定的函数关系不一定是单函数,所以④正确.
函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则y=f(x)=lnx,∴f(e3)=lne3=3,故⑤正确
故答案为:③④⑤
点评:本题以命题的真假判断为载体考查了对数的运算性质,复合函数的单调性,函数的值域,函数的单调性,反函数等知识点,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列五个命题:
①在三角形ABC中,若A>B则sinA>sinB;
②若数列{bn}的前n项和Sn=n2+2n+1.则数列{bn}从第二项起成等差数列;
③已知Sn是等差数列{an}的前n项和,若S7>S8则S9>S8
④已知等差数列{an}的前n项和为Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比数列,且Sn=3n+1+r,则r=-1;
其中正确命题的序号为:
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若4a=3,log45=b,则log4
95
=a2-b

②函数f(x)=0.51+2x-x2的单调递减区间是[1,+∞);
③m≥-1,则函数y=lg(x2-2x-m)的值域为R;
④若映射f:A→B为单调函数,则对于任意b∈B,它至多有一个原象;
⑤函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则f(e3)=3.
其中正确的命题是
③④⑤
③④⑤
(把你认为正确的命题序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③⑤
②③⑤
(填序号).
①若
a
b
=0,则一定有
a
b
;  ②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函数f(x)=a1-2x+1都恒过定点(
1
2
,2)

④方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F≥0;
⑤若存在有序实数对(x,y),使得
OP
=x
OA
+y
OB
,则O,P,A,B四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)已知f(x)在x∈[a,b]上的最大值为M,最小值为m,给出下列五个命题:
①若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,m];
②若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,M];
③若关于x的方程p=f(x)在区间[a,b]上有解,则p的取值范围是[m,M];
④若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,m];
⑤若关于x的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,M];
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:其中正确的命题有
②③④
②③④
(填序号).
①函数y=sinx(x∈[-π,π])的图象与x轴围成的图形的面积S=
π
sinxdx

C
r+1
n+1
=
C
r+1
n
+
C
r
n

③在(a+b)n的展开式中,奇数项的二项式系数之和等于偶数项的二项式系数之和;
④i+i2+i3+…i2012=0;
⑤用数学归纳法证明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的过程中,由假设n=k成立推到n=k+1成立时,只需证明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步练习册答案