【题目】如图,P—ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角的余弦值;
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥中,菱形所在的平面,是中点,是上的点.
(1)求证:平面平面;
(2)若是的中点,当时,是否存在点,使直线与平面的所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知等差数列的公差为,前项和为,且.
(1)求数列的通项公式与前项和;
(2)将数列的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列的前三项,记数列的前项和为,若存在,使得对任意,总有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知若椭圆:()交轴于,两点,点是椭圆上异于,的任意一点,直线,分别交轴于点,,则为定值.
(1)若将双曲线与椭圆类比,试写出类比得到的命题;
(2)判定(1)类比得到命题的真假,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过();
④在一个2×2列联中,由计算得则有99%的把握确认这两个变量间有关系;
` 其中错误的个数是 ( )
本题可以参考独立性检验临界值表:
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“十三五”规划确定了到2020年消除贫困的宏伟目标,打响了精准扶贫的攻坚战,为完成脱贫任务,某单位在甲地成立了一家医疗器械公司吸纳附近贫困村民就工,已知该公司生产某种型号医疗器械的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该型号医疗器械x千件且能全部销售完,每千件的销售收入为万元,已知
(1)请写出月利润y(万元)关于月产量x(千件)的函数解析式;
(2)月产量为多少千件时,该公司在这一型号医疗器械的生产中所获月利润最大?并求出最大月利润(精确到0.1万元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果函数的导函数为,在区间上存在,使得,,则称为区间上的“双中值函数“已知函数是上的“双中值函数“,则实数m的取值范围是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com