精英家教网 > 高中数学 > 题目详情
在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)若bn=log2an对于任意的n∈N*,且n≥3恒成立,求m的取值范围.
【答案】分析:(1)直接根据已知条件得到Sn-Sn-1=Sn-1,即,进而求出数列{Sn}的通项公式;再根据前n项和与通项之间的关系即可求出数列{an}的通项公式;
(2)先求出{bn}的通项公式,再利用裂项求和法求出不等式左边的表达式即可求出m的取值范围.
解答:解:(1)∵an=an-1+an-2+…+a2+a1(n∈N*,n≥2),
∴Sn-Sn-1=Sn-1,∴
∴数列{Sn}是以S1=a1=1为首项,以2为公比的等比数列,
∴Sn=2n-1.当n≥2时,an=Sn-Sn-1=2n-1-2n-2=2n-2
∵a1=1不适合上式,
∴数列的通项公式为
(2)当n∈N*,且n≥3时,bn=n-2,
恒成立,
∴m≥1.
点评:本题主要考查由递推公式推导数列的通项公式以及裂项求和法的应用.裂项求和法适用于数列的通项为分式形式,分子为常数,分母为一等差数列相邻两项的乘积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:数列{bn}是等差数列;
(Ⅲ)设cn=
3
bnbn+1
,Sn是数列{cn}的前n项和,求使Sn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想数列{an}的通项公式an的表达式;
(2)用适当的方法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的个位数(n∈N*),若数列{an}的前k项和为2011,则正整数k之值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)记bn=(an-
1
2
2,n∈N+,求证:数列{bn}是等差数列;
(2)求{an}的通项公式;
(3)对?k∈N+,是否总?m∈N+使得an=k?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)计算a2,a3
(Ⅱ)求证:{
an-
1
2
3n
}是等差数列;
(Ⅲ)求数列{an}的通项公式an及其前n项和Sn

查看答案和解析>>

同步练习册答案