分析 (1)设等差数列{an}的公差为d≠0,等比数列{bn}的公比为q,由a1=b1=1,a2=b2,a6=b3,可得1+d=q,1+5d=q2,联立解出即可得出.
(2)由cn=anbn=(3n-2)4n-1.利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(1)设等差数列{an}的公差为d≠0,等比数列{bn}的公比为q,
∵a1=b1=1,a2=b2,a6=b3,∴1+d=q,1+5d=q2,联立解得$\left\{\begin{array}{l}{q=4}\\{d=3}\end{array}\right.$.
∴an=1+3(n-1)=3n-2,bn=4n-1.
(2)由cn=anbn=(3n-2)4n-1.
∴数列{cn}的前n项和Sn=1+4×4+7×42+…+(3n-2)4n-1.
4Sn=4+4×42+7×43…+(3n-5)4n-1+(3n-2)•4n.
∴-3Sn=1+3×(4+42+…+4n-1)-(3n-2)•4n=1+3×$\frac{4({4}^{n-1}-1)}{4-1}$-(3n-2)•4n=(3-3n)•4n-3,
∴Sn=(n-1)•4n+1.
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 等腰三角形 | B. | 钝角三角形 | C. | 等边三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m>$\frac{2}{3}$ | B. | m<-2 | C. | 1<m<2 | D. | $\frac{2}{3}$<m<1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{2}{3}$ | B. | 3 | C. | $\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com