精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的边长为2的等边三角形,动点P满足 ,则 的取值范围是

【答案】[﹣ ,0]
【解析】解:如图所示,
△ABC中,设BC的中点为O,则 =2
= sin2θ +cos2θ =sin2θ +cos2θ
=(1﹣cos2θ) +cos2θ
= +cos2θ( ),
=cos2θ( ),
可得 =cos2θ
又∵cos2θ∈[0,1],∴P在线段OA上,
由于BC边上的中线OA=2×sin60°=
因此( + =2
设| |=t,t∈[0, ],
可得( + =﹣2t( ﹣t)=2t2﹣2 t=2(t﹣ 2
∴当t= 时,( + 取得最小值为﹣
当t=0或 时,( + 取得最大值为0;
的取值范围是[﹣ ,0].
所以答案是:[﹣ ,0].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是: .

(Ⅰ)求图中的值,并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人. 记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1, )是函数f(x)= ax(a>0,a≠1)图象上一点,等比数列{an}的前n项和为c﹣f(n).数列{bn}(bn>0)的首项为2c,前n项和满足 = +1(n≥2). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{ }的前n项和为Tn , 问使Tn 的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函数f(x)=lg(2x+a)的定义域为集合C,满足AC,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 (n∈N*)的展开式中第五项的系数与第三项的系数的比是10:1.
(1)求在展开式中含x 的项;
(2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立. (I)求该顾客在两次抽奖中恰有一次中奖的概率;
(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据,如下表所示:

已知变量具有线性负相关关系,且 ,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.

(1)试判断谁的计算结果正确?并求出的值;

2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”,现从检测数据中随机抽取2个,求这两个检测数据均为“理想数据”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是y=f(x)的导函数的图象,现有四种说法: 1)f(x)在(﹣2,1)上是增函数;
2)x=﹣1是f(x)的极小值点;
3)f(x)在(﹣1,2)上是增函数;
4)x=2是f(x)的极小值点;
以上说法正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 当a=1时,求函数g(x)的单调增区间;
(Ⅱ) 求函数g(x)在区间[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设f(x)=g(x)+4x﹣x2﹣2lnx,
证明: (n≥2).(参考数据:ln2≈0.6931)

查看答案和解析>>

同步练习册答案