精英家教网 > 高中数学 > 题目详情

(本题满分15分)

已知函数

(Ⅰ)若无极值点,但其导函数有零点,求的值;

(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于

 

【答案】

解 (Ⅰ)首先,                     --------1分

  ---------------3分

有零点而无极值点,表明该零点左右同号,故

由此可得   ----------6分

(Ⅱ)由题意,有两不同的正根,故.

解得:                 ----------------8分

的两根为,不妨设,因为在区间上, ,而在区间上,,故的极小值点.-------10分

在区间是减函数,如能证明则更有                                                    ---------------13分

由韦达定理,

其中 ,利用导数容易证明时单调递减,

,因此,即的极小值       -------15分

(Ⅱ)另证:实际上,我们可以用反代的方式证明的极值均小于.

由于两个极值点是方程的两个正根,所以反过来,

(用表示的关系式与此相同),这样

,再证明该式小于是容易的(注意,下略).

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题

(本题满分15分)设函数

(Ⅰ)若函数上单调递增,在上单调递减,求实数的最大值;

(Ⅱ)若对任意的都成立,求实数的取值范围.

注:为自然对数的底数.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题

(本题满分15分)已知直线与曲线相切

1)求b的值;

2)若方程上恰有两个不等的实数根,求

①m的取值范围;

②比较的大小

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题

(本题满分15分)已知抛物线),焦点为,直线交抛物线两点,是线段的中点,

  过轴的垂线交抛物线于点

  (1)若抛物线上有一点到焦点的距离为,求此时的值;

  (2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题

(本题满分15分)

已知函数

(1)求的单调区间;

(2)设,若上不单调且仅在处取得最大值,求的取值范围.

 

查看答案和解析>>

同步练习册答案