精英家教网 > 高中数学 > 题目详情

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

【答案】(1C1:(x+42+y﹣32=1C2,(2)点Q

【解析】试题分析:(1)分别消去两曲线参数方程中的参数得到两曲线的直角坐标方程,即可得到曲线表示一个圆;曲线表示一个椭圆;(2)把的值代入曲线的参数方程得点的坐标,然后把直线的参数方程化为普通方程,根据曲线的参数方程设出的坐标,利用中点坐标公式表示出的坐标,利用点到直线的距离公式标准处到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.

试题解析:(1

为圆心是,半径是1的圆, 为中心是坐标原点,焦点在轴,长半轴长是8,短半轴长是3的椭圆.

2)当时, ,故

的普通方程为的距离

所以当时, 取得最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(ax2+2x+3).

(1)若f(1)=1,求f(x)的单调区间;

(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣ex+ex(e为自然对数的底数)
(1)求函数f(x)的最大值;
(2)设g(x)=lnx+ x2+ax,若对任意x1∈(0,2],总存在x2∈(0,2].使得g(x1)<f(x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx,g(x)=ex﹣ax,其中a为正实数,若f(x)在(1,+∞)上无最小值,且g(x)在(1,+∞)上是单调递增函数,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:

同意限定区域停车

不同意限定区域停车

合计

20

5

25

10

15

25

合计

30

20

50

则认为“是否同意限定区域停产与家长的性别有关”的把握约为__________

附:,其中.

0.050

0.005

0.001

3.841

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】①回归分析中,相关指数的值越大,说明残差平方和越大;

②对于相关系数越接近1,相关程度越大,越接近0,相关程度越小;

③有一组样本数据得到的回归直线方程为,那么直线必经过点

是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合;

以上几种说法正确的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:

(1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值X(元)的概率分布列和期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=2cos2xcos2x).

1)求fx)的周期和最大值;

2)已知△ABC中,角A.B.C的对边分别为ABC,若fπA)=b+c2,求a的最小值.

查看答案和解析>>

同步练习册答案