精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)以椭圆的右焦点为焦点F.
(1)求抛物线方程.
(2)过F做直线L与抛物线交于C,D两点,已知线段CD的中点M横坐标3,求弦|CD|的长度.
【答案】分析:(1)先求出椭圆的右焦点坐标,知,从而可求得抛物线的标准方程;
(2)由于直线过焦点,先利用中点的坐标公式求出x1+x2,利用弦长公式x1+x2+p求出CD的长.
解答:解:(1)椭圆的右焦点(1,0),
由题意知
∴p=2.…(2分)
抛物线的标准方程为y2=4x;
(2):因为抛物线为y2=4x,
所以p=2
设C、D两点横坐标分别为x1,x2
因为线段CD中点的横坐标为3,
,即x1+x2=6,
故|CD|=x1+x2+p=6+2=8.
点评:本题是直线被圆锥曲线所截,求弦长问题,一般可以由公式:|AB|═求得;线段中点坐标通常与根与系数的关系相联系,从而简化解题过程.但对于过焦点的弦长注意圆锥曲线定义的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案