精英家教网 > 高中数学 > 题目详情

【题目】函数满足以下4个条件.

①函数的定义域是,且其图象是一条连续不断的曲线;

②函数不是单调函数;

③函数是偶函数;

④函数恰有2个零点.

1)写出函数的一个解析式;

2)画出所写函数的解析式的简图;

3)证明满足结论③及④.

【答案】1)见解析 2)见解析 3)见解析

【解析】

(1)根据常见函数的性质写出满足条件的函数即可.

(2)根据常见函数的图像与函数的图像变换方法画图即可.

(3)根据函数满足定义域关于原点对称,即可证明为偶函数.直接求解函数的零点即可证明函数有两个零点.

本题为开放性题,答案不唯一,只需写出符合条件的函数即可,提供以下5个函数仅供参考.

1 2

3 4

5

下面以函数为例给出证明:

证明:的定义域为R

因为对定义域的每一个x,都有

所以函数是偶函数,

又因为当时,

所以当时,函数只有一个零点,

又因为函数是偶函数,

所以函数恰有2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的每一个值,在其定义域内都存在唯一的,使成立,则该函数为“依附函数”.

(1)判断函数是否为“依附函数”,并说明理由;

(2)若函数在定义域上“依附函数”,求的取值范围;

(3)已知函数在定义域上为“依附函数”.若存在实数,使得对任意的,不等式都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个比赛安排4名志愿者完成6项工作,每人至少完成一项,每项工作由一人完成,则不同的安排方式有多少种(

A.7200B.4800C.2640D.1560

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)若存在使得,求实数的取值范围;

(Ⅲ)若当时恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:

0

1

2

3

0

0.7

1.6

3.3

为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Qav3bv2cvQ=0.5vaQklogavb

(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;

(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:

0

1

2

3

1)求的值;

2)若每个月被消费者投诉的次数互不影响,求该汽车品牌在五个月内被消费者投诉3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且满足,当时,,则函数在区间上所有零点的个数为( )

A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生活中万事万物都是有关联的,所有直线中有关联直线,所有点中也有相关点,现在定义:平面内如果两点都在函数的图像上,而且满足两点关于原点对称,则称点对()是函数的“相关对称点对”(注明:点对()与()看成同一个“相关对称点对”).已知函数,则这个函数的“相关对称点对”有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,摩天轮的半径为点距地面的高度为,摩天轮按逆时针方向作匀速运动,且每转一圈,摩天轮上点的起始位置在最高点.

(1)试确定点距离地面的高度(单位:)关于旋转时间(单位:)的函数关系式;

(2)在摩天轮转动一圈内,有多长时间点距离地面超过

查看答案和解析>>

同步练习册答案