精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=3x2-5x+a的两个零点分别为x1,x2.且有-2<x1<0与1<x2<3,试求出a的取值范围.

分析 由条件利用二次函数的性质求得实数a的取值范围.

解答 解:∵f(x)=3x2-5x+a,
∴f(x)的图象是开口向上的抛物线.
由题意得:$\left\{\begin{array}{l}{f(-2)>0}\\{f(0)<0}\\{f(1)<0}\\{f(3)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{12+10+a>0}\\{a<0}\\{3-5+a<0}\\{23-15+a>0}\end{array}\right.$解的-8<a<0,
故a的取值范围为(-8,0).

点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)求函数f(x)=ln($\sqrt{3}$-2cosx)的定义域;
(2)求函数f(x)=2cos2x+3sinx-5的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,如图,已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设${x_1}=2,{x_2}=\frac{1}{3}$,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各数中最小的数是(  )
A.111 111(2)B.210(6)C.1 000(4)D.110(8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的偶函数,f(x)在x≥0时,f(x)=ex+ln(x+1),若f(a)<f(a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A={x|a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B,则实数a的取值范围是(-∞,-4)∪(5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下几何体的体积为50.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数$f(x)=\left\{\begin{array}{l}\sqrt{x-1}(x>1)\\ sin\frac{πx}{2}(x≤1)\end{array}\right.$,则f[f(2)]=(  )
A.0B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x+x-1=3,则代数式$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}{{x}^{2}+{x}^{-2}}$的值是$\frac{\sqrt{5}}{7}$.

查看答案和解析>>

同步练习册答案