分析 由条件利用二次函数的性质求得实数a的取值范围.
解答 解:∵f(x)=3x2-5x+a,
∴f(x)的图象是开口向上的抛物线.
由题意得:$\left\{\begin{array}{l}{f(-2)>0}\\{f(0)<0}\\{f(1)<0}\\{f(3)>0}\end{array}\right.$,即$\left\{\begin{array}{l}{12+10+a>0}\\{a<0}\\{3-5+a<0}\\{23-15+a>0}\end{array}\right.$解的-8<a<0,
故a的取值范围为(-8,0).
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com