精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三个内角A、B、C的对边分别为a,b,c,且△ABC的面积S=
(1)求角B的大小;
(2)若a=2,且 , 求边c的取值范围.

【答案】解:(1)由已知及三角形面积公式得S=acsinB=
化简得sinB=cosB,
即tanB=,又0<B<π,
∴B=
(2)由正弦定理得
即c=
由C=﹣A,得c===
又由
知1≤tanA≤
故c∈[2,+1].
【解析】(1)根据正弦定理,建立条件关系,即可求出角B的大小;
(2)根据正弦定理表示出c,根据三角函数的图象和性质即可得到结论.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校某次N名学生的学科能力测评成绩(满分120分)的频率分布直方图如下,已知分数在100﹣110的学生数有21人
(1)求总人数N和分数在110﹣115分的人数n.;
(2)现准备从分数在110﹣115的n名学生(女生占 )中选3位分配给A老师进行指导,设随机变量ξ表示选出的3位学生中女生的人数,求ξ的分布列与数学期望Eξ;
(3)为了分析某个学生的学习状态,对其下一阶段的学习提供指导建议,对他前7次考试的数学成绩x、物理成绩y进行分析,该生7次考试成绩如表

数学(x)

88

83

117

92

108

100

112

物理(y)

94

91

108

96

104

101

106

已知该生的物理成绩y与数学成绩x是线性相关的,求出y关于x的线性回归方程 = x+ .若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归方程 = x+ 的斜率和截距的最小二乘估计分别为 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的极值;

(2) 函数有两个极值点,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差数列,bn , an+1 , bn+1成等比数列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2),Sn=c1+c2+…+cn , 试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线y=f(x),y=g(x)为“平行曲线”,设f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB=
证明:平面ADE⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-a2 lnx+x2-ax(a∈R).

(1)试讨论函数f(x)的单调性:

(2)若函数f(x)在区间(1,e)中有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , a1=1,且nan+1=2Sn(n∈N*),数列{bn}满足b1= , b2= , 对任意n∈N* , 都有bn+12=bnbn+2
求数列{an}、{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)=(2x-x2)ex

(-)是f(x)的单调递减区间;

f(-)是f(x)的极小值,f()是f(x)的极大值;

f(x)没有最大值,也没有最小值;

f(x)有最大值,没有最小值.

其中判断正确的是_________.

查看答案和解析>>

同步练习册答案