精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+bx2+cx,x∈R的图象与x轴相切于非原点的一点,且函数的极小值为-4.
(1)求b,c的值;
(2)对a<0,记F(a)为f(x)在[a,0]上的最小值,若F(a)≤λa恒成立,试求实数λ的取值范围;
(3)求证:当-1<x<0时,f(x)<4sinx.

解:(1)依题意,函数f(x)的图象如图所示,
f'(x)=3x2+2bx+c∵原点不是切点,∴c≠0.
记切点横坐标为x0(x0<0)
又f(x)=x3+bx2+cx=x(x2+bx+c)
则方程x2+bx+c=0有且仅有一个根x=x0∴△=b2-4c=0,即.①

,即5b2-36bc+432=0.②
由①②,解得b=6,c=9
(2)f(x)=x3+6x2+9x,由f(x)=-4得x=-4或-1.∴当a<-4时,f(x)在[a,0]上的最小值F(a)=f(a)=a3+6a2+9a
当-4≤a≤1时,f(x)在[a,0]上的最小值F(a)=f(-1)=-4
当1<a<0时,f(x)在[a,0]上的最小值F(a)=f(a)=a3+6a2+9a
要使F(a)≤λa恒成立,只需恒成立,∴当a<-4时,,则λ≤1
当1<a<0时,则λ≤4
当-4≤a≤-1时,,则λ≤1
综上所述,λ≤1
(3)由(2)知,当-1<x<0,f(x)<4x恒成立
(或利用f(x)-4x=x3+6x2+5x=x(x+1)(x+5)<0在-1<x<0,恒成立)
记g(x)=x-sinx(-1<x<0),
则g'(x)=1-cosx>0.∴g(x)在(-1,0)上单调递增,g(x)<g(0)=0.
∴x<sinx在-1<x<0恒成立,∴-1<x<0时,在f(x)≤4x<4sinx,得证
分析:(1)根据f(x)=x3+bx2+cx的图象与x轴相切于非原点的一点,可以判断c≠0.且当x小于0时有一个极值为0,结合图象可得方程x2+bx+c=0有且仅有一个根,且在这个根处导数等于0,据此可求出b,c的值.
(2)先求函数的导数,令导数等于0,求出极值点,再按a的取值讨论求出函数在[a,0]上的最小值,代入F(a)≤λa,求λ的取值范围.
(3)由(2)知,当-1<x<0,f(x)<4x恒成立,所以可用放缩法,证明4x<4sinx即可,再转换为判断函数y=4x-4sinx与0的大小比较,借助导数求出.
点评:本题主要考查了导数与函数的极值,最值,以及单调性的判断之间的关系,属于导数的应用题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案