精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线轴的交点,点轴的负半轴上.若为原点),且,求直线的斜率.

【答案】(Ⅰ)(Ⅱ).

【解析】

(Ⅰ)由题意得到关于a,b,c的方程,解方程可得椭圆方程;

(Ⅱ)联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.

(Ⅰ) 设椭圆的半焦距为,依题意,,又,可得b=2,c=1.

所以,椭圆方程为.

(Ⅱ)由题意,设.设直线的斜率为

,则直线的方程为,与椭圆方程联立

整理得,可得

代入

进而直线的斜率

中,令,得.

由题意得,所以直线的斜率为.

,得

化简得,从而.

所以,直线的斜率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的实轴长为4,焦距为

1)求椭圆C的标准方程;

2)设直线l经过点且与椭圆C交于不同的两点MN(异于椭圆的左顶点),设点Qx轴上的一个动点.直线QMQN的斜率分别为,试问:是否存在点Q,使得为定值?若存在.求出点Q的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解地区足球特色学校的发展状况,某调查机构得到如下统计数据:

年份

2014

2015

2016

2017

2018

足球特色学校(百个)

0.30

0.60

1.00

1.40

1.70

1)根据上表数据,计算的相关系数,并说明的线性相关性强弱(已知:,则认为线性相关性很强;,则认为线性相关性一般;,则认为线性相关性较弱);

2)求关于的线性回归方程,并预测地区2019年足球特色学校的个数(精确到个).

本题参考公式和数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R.

(1)讨论的单调性;

(2)若有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试求出正整数的最小可能值,使得下述命题成立:对于任意的个整数(允许相等),必定存在相应的个整数(也允许相等),且,使得2003能整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,双曲线 (ab0)的左右焦点分别为F1(-c0),F2(c0),左顶点为A,左准线为l,过F1作直线交双曲线C左支于PQ两点,则下列命题正确的是( )

A.PQx轴,则△PQF2的周长为

B.PAlD,则必有QD//x

C.PQ中点为M,则必有PQMF2

D.PO交双曲线C右支于点N,则必有PQ//NF2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.

1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;

2)设四名学生的考试成绩在区间内,两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角三角形ABC中,(如右图所示)

(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.

(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.

查看答案和解析>>

同步练习册答案