精英家教网 > 高中数学 > 题目详情
16.已知圆C:(x-3)2+(y-4)2=1和两点A(1-m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为2$\sqrt{5}$+1.

分析 C:(x-3)2+(y-4)2=1的圆心C(3,4),半径r=1,设P(a,b)在圆C上,则$\overrightarrow{AP}$=(a+m-1,b),$\overrightarrow{BP}$=(a-m-1,b),由已知得m2=(a-1)2+b2,m的最大值即为即为$\sqrt{(3-1)^{2}+{4}^{2}}$+1=2$\sqrt{5}$+1.

解答 解:圆C:(x-3)2+(y-4)2=1的圆心C(3,4),半径r=1,
设P(a,b)在圆C上,则$\overrightarrow{AP}$=(a+m-1,b),$\overrightarrow{BP}$=(a-m-1,b),
∵∠APB=90°,∴$\overrightarrow{AP}$•$\overrightarrow{BP}$=0,
∴$\overrightarrow{AP}$•$\overrightarrow{BP}$=(a+m-1)(a-m-1)+b2=0,
∴m2=(a-1)2+b2
∴m的最大值即为$\sqrt{(3-1)^{2}+{4}^{2}}$+1=2$\sqrt{5}$+1.
故答案为:2$\sqrt{5}$+1.

点评 本题考查了平面向量的应用问题,也考查了直线与圆的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={a_n}+{log_{\frac{1}{2}}}{a_n}$,Sn=b1+b2+…+bn,求使Sn-2n+1+47<0成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集U=R,A={x∈R|a≤x≤3a-1},B={x∈R|3x2-8x+4≤0}.
(1)若a=1,求(∁UA)∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组表示同一函数的是(  )
A.y=x(x∈R)与y=x(x∈N)B.$y=\sqrt{x^2}$与$y={({\sqrt{x}})^2}$C.y=1+$\frac{1}{x}$与u=1+$\frac{1}{v}$D.y=x与$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:
(1)lg(x-1)<1;
(2)a2x-7>a4x-1(a>0,且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{x^3},x≤a\\{x^2},x>a.\end{array}$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数$y={log_2}(-{x^2}+4x+32)$的定义域为集合A,函数g(x)=2x-a,x∈(-∞,2)的值域为集合B
(1)求集合A、B;
(2)若集合A、B满足A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知p:$\left\{{\begin{array}{l}{x+2≥0}\\{x-10≤0}\end{array}}\right.$,q:1-m≤x≤1+m,若非p是非q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在△ABC中,点D是边BC的中点,A,D,E三点共线,求证:存在一个实数λ,使得$\overrightarrow{AE}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$)

查看答案和解析>>

同步练习册答案