精英家教网 > 高中数学 > 题目详情

【题目】已知梯形如图(1)所示,其中 ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.

(Ⅰ)求证:平面平面

(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.

【答案】(1)见解析;(2)与平面所成角的正弦值为.

【解析】试题分析:(1)要证面面垂直,可先证线线垂直,先由线面关系得到为正方形得,进而得到平面,从而得到面面垂直;(2)建立空间坐标系,分别求得面的法向量和线的方向向量,由向量夹角公式求得线面角.

解析:

(Ⅰ)证明:由平面平面

平面平面 平面

平面,又平面

为正方形得

平面

平面

又∵平面

∴平面平面.

(Ⅱ)由平面

故以为原点, 所在直线分别为轴, 轴, 轴建立图示空间直角坐标系,则

,则

设平面的一个法向量为

平面

与平面所成的角为,则

与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的面积为,且,

(Ⅰ)若 的图象与直线相邻两个交点间的最短距离为,且,求的面积

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市县乡教师流失现象非常严重,为了县乡孩子们能接受良好教育,某市今年要为两所县乡中学招聘储备未来三年的教师,现在每招聘一名教师需要1万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要3万元,已知现在该市县乡中学无多余教师,为决策应招聘多少县乡教师搜集并整理了该市50所县乡中学在过去三年内的教师流失数,得到如表的频率分布表:

流失教师数

6

7

8

9

频数

10

15

15

10

以这50所县乡中学流失教师数的频率代替一所县乡中学流失教师数发生的概率,记表示两所县乡中学在过去三年共流失的教师数, 表示今年为两所县乡中学招聘的教师数.为保障县乡孩子教育不受影响,若未来三年内教师有短缺,则第四年马上招聘.

(1)求的分布列;

(2)若要求,确定的最小值;

(3)以未来四年内招聘教师所需费用的期望值为决策依据,在之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度 (单位:),对某种鸡的时段产蛋量(单位:) 和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.

其中.

(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给判断即可,不必说明理由)

(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;

(3)已知时段投入成本的关系为,当时段控制温度为时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?

附:①对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

,点在线段上,且 平面.

1)求证:平面平面

2)当四棱锥的体积最大时,求四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间几何体中, 均为边长为的等边三角形, 为腰长为的等腰三角形,平面平面,平面平面.

试在平面内作一条直线,使得直线上任意一点的连线均与平面平行,并给出详细证明;

求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2018江苏南京师大附中、天一、海门、淮阴四校高三联考如图,一只蚂蚁从单位正方体的顶点出发,每一步(均为等可能性的)经过一条边到达另一顶点,设该蚂蚁经过步回到点的概率

(I)分别写出的值;

(II)设顶点出发经过步到达点的概率为,求的值;

(III)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占在抽取的男性市民120人中持支持态度的为80人.

(Ⅰ)完成列联表并判断是否有的把握认为性别与支持与否有关

(Ⅱ)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左、右焦点, 是椭圆上一点,且.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,且,试求点到直线的距离.

查看答案和解析>>

同步练习册答案