精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a为实数).
(1)当a=4时,求函数y=g(x)在x=0处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)如果关于x的方程g(x)=2exf(x)在区间[ ,e]上有两个不等实根,求实数a的取值范围.

【答案】
(1)解:当a=4时,g(x)=(﹣x2+4x﹣3)ex,g(0)=﹣3.

g′(x)=(﹣x2+2x+1)ex,故切线的斜率为g′(0)=1,

∴切线方程为:y+3=x﹣0,即y=x﹣3


(2)解:f′(x)=lnx+1,

x

f'(x)

0

+

f(x)

单调递减

极小值(最小值)

单调递增

①当 时,在区间(t,t+2)上f(x)为增函数,

∴f(x)min=f(t)=tlnt;

②当 时,在区间 上f(x)为减函数,在区间 上f(x)为增函数,


(3)解:由g(x)=2exf(x),可得:2xlnx=﹣x2+ax﹣3,

当x,h(x),h′(x)变化如下:

x

1

(1,e)

h′(x)

0

+

h(x)

单调递减

极小值(最小值)

单调递增

,h(1)=4,h(e)=

∴关于x的方程g(x)=2exf(x)在区间[ ,e]上有两个不等实根,


【解析】(1)把a=4代入函数g(x)的解析式,求出导数,得到g(0)和g′(0),由直线方程的点斜式得切线方程;(2)利用导数求出函数f(x)在[t,t+2]上的单调区间,求出极值和区间端点值,比较大小后得到f(x)在区间[t,t+2](t>0)上的最小值;(3)把f(x)和g(x)的解析式代入g(x)=2exf(x),分离变量a,然后构造函数 ,由导数求出其在[ ,e]上的最大值和最小值,则实数a的取值范围可求.
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“海之旅”表演队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时刻而周期性变化.为了了解变化规律,该团队观察若干天后,得到每天各时刻的浪高数据的平均值如下表:

0

3

6

9

12

15

18

21

24

1.0

1.4

1.0

0.6

1.0

1.4

0.9

0.6

1.0

(1)从中选择一个合适的函数模型,并求出函数解析式;

(2)如果确定当浪高不低于0.8米时才进行训练,试安排白天内恰当的训练时间段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次考试无纸化阅卷的评分规则的程序如图所示,x1 , x2 , x3为三个评卷人对同一道题的独立评分,p为该题的最终得分,当x1=6,x2=9,p=8.5时,x3=(

A.11
B.10
C.8
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0, f(1)=-2.

(1)求证:f(x)是奇函数;

(2)判断函数的单调性

(3)求f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数在定义域内给定区间上存在,满足 ,则称函数上的“平均值函数”,是它的均值点.

(1)是否是上的“平均值函数”,如果是请找出它的均值点;如果不是,请说明理由;

(2)现有函数上的平均值函数,则求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数有( )

①用刻画回归效果,当越大时,模型的拟合效果越差;反之,则越好;

②可导函数处取得极值,则

③归纳推理是由特殊到一般的推理,而演绎推理是由一般到特殊的推理;

④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图程序框图的算法思路源于我国古代数学名著《九章算术》中的某一种算法.执行该程序框图,输入分别为98,63,则输出的结果是(

A.14
B.18
C.9
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,点上运动,给出下列四个命题:

①三棱锥的体积不变;

平面 ④平面平面

其中正确的命题是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=x2e1x﹣a(x﹣1).
(1)当a=1时,求f(x)在( ,2)内的极大值;
(2)设函数g(x)=f(x)+a(x﹣1﹣e1x),当g(x)有两个极值点x1 , x2(x1<x2)时,总有x2g(x1)≤λf′(x1),求实数λ的值.(其中f′(x)是f(x)的导函数.)

查看答案和解析>>

同步练习册答案