精英家教网 > 高中数学 > 题目详情

已知二次函数在区间上有最大值,求实数的值

解析试题分析:由已知二次函数开口方向向下,其对称轴为,所以函数在区间上单调递增,在上单调递减,又函数在区间上的最大值受到与区间端点值0、1大小关系的制约,故需要对的取值范围针对于0、1进行分类讨论,即当时,函数的最大值为;当时,函数的最大值为;当时,函数的最大值为,从而求出实数的值.
试题解析:由,得函数的对称轴为:,  1分
①当时,上递减,
,即;            4分
②当时,上递增,
,即;                   7分
③当时,递增,在上递减,
,即,解得:矛盾;
综上:a =-2或                      10分
考点:二次函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(I)求函数的单调区间;
(II)若不等式)在上恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,求实数x的取值范围;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数定义域和函数图像所过的定点;
(2)若已知时,函数最大值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为奇函数.
(1)求常数的值;
(2)判断函数的单调性,并说明理由;
(3)函数的图象由函数的图象先向右平移2个单位,再向上平移2个单位得到,写出的一个对称中心,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

运货卡车以每小时x千米的匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油()升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求的值,作出函数的图象并指出函数的值域.

查看答案和解析>>

同步练习册答案