精英家教网 > 高中数学 > 题目详情

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

(1)
(2)m<2,;当m>3时,;当时,

解析试题分析:⑴根据题意,由于函数在点处取得极小值-4,使其导数的取值范围为,可知的两个根为1,3,结合韦达定理可知 
⑵由于,那么导数
,求,结合二次函数开口方向向下,以及对称轴和定义域的关系分情况讨论可知:
①当时,
②当m<2时,g(x)在[2,3]上单调递减,
③当m>3时,g(x)在[2,3]上单调递增,
考点:导数的运用
点评:主要是考查了导数的几何意义,以及运用导数来求解函数最值的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知函数.
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线的斜率为负数时,求在x轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在点处的切线斜率为
(Ⅰ)求实数的值;
(Ⅱ)判断方程根的个数,证明你的结论;
(Ⅲ)探究:是否存在这样的点,使得曲线在该点附近的左、右的两部分分别位于曲线在该点处切线的两侧?若存在,求出点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求曲线y=x2,直线y=x,y=3x围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,有极大值
(1)求的值;
(2)求函数的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的最小值;
(2)若直线对任意的都不是曲线的切线,求的取值范围;
(3)设,求的最大值的解析式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,试确定函数的单调区间;
(Ⅱ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅲ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

同步练习册答案