精英家教网 > 高中数学 > 题目详情

【题目】运行如图的程序,如果输入的m,n的值分别是24和15,记录输出的i和m的值.在平面直角坐标系xOy中,已知点A(i﹣4,m),圆C的圆心在直线l:y=2x﹣4上.

(1)若圆C的半径为1,且圆心C在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使∠OMA=90°,求圆C的半径r的最小值.

【答案】
(1)解:根据题意可得,i=4,m=3,∴A(0,3).

得圆心C为(3,2),

∵圆C的半径为1,∴圆C的方程为:(x﹣3)2+(y﹣2)2=1.

显然切线的斜率一定存在,设所求圆C的切线方程为y=kx+3,即kx﹣y+3=0,

,即 ,∴2k(4k+3)=0

∴k=0或者

∴所求圆C的切线方程为:y=3或者

即y=3或者3x+4y﹣12=0.


(2)解:依题意,点M在以OA为直径的圆上,其圆心为D ,半径为

点M也在圆C上,∴点M是圆D和圆C的公共点,

又圆C的圆心在直线l:y=2x﹣4上,∴要使圆C的半径最小,只须过点D作直线l的垂线,以垂足为圆心C并与圆D外切时的圆C的半径r最小,

∵点D到直线l的距离d=

∴圆C的半径r最小值为


【解析】根据题意可得,i=4,m=3,即A(0,3),(1)联立 得圆心C为(3,2),则圆C的方程为:(x﹣3)2+(y﹣2)2=1,显然切线的斜率一定存在,设所求圆C的切线方程为y=kx+3,即kx﹣y+3=0,由点到直线的距离公式,可得到k的值,则所求圆C的切线方程可求;(2)依题意,点M在以OA为直径的圆上,其圆心为D ,半径为 ,点M也在圆C上,得到点M是圆D和圆C的公共点,又圆C的圆心在直线l:y=2x﹣4上,要使圆C的半径最小,只须过点D作直线l的垂线,以垂足为圆心C并与圆D外切时的圆C的半径r最小,由点D到直线l的距离即可得圆C的半径r最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线yx3,求:

(1)曲线在点P(1,1)处的切线方程;

(2)过点P(1,0)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆和直线.

(Ⅰ)求的参数方程以及圆上距离直线最远的点坐标;

(Ⅱ)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,将圆上除点以外所有点绕着逆时针旋转得到曲线,求曲线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中, ,且的等比中项为.

1)求数列的通项公式;

2)设,数列的前项和为,是否存在正整数,使得对任意恒成立?若存在,求出正整数的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 底面.

(1)证明:

(2)设,求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y的值;
(2)估计本次竞赛学生成绩的中位数和平均分;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinx+cosx=1,则(sinx)2018+(cosx)2018=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求曲线在点处的切线方程;

(2)设,若对任意的,存在使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案