精英家教网 > 高中数学 > 题目详情
已知数列{an}中,an+1=3Sn,则下列关于{an}的说法正确的是(  )
分析:由条件可得Sn+1=4Sn,对S1分类讨论,即可得出结论.
解答:解:∵an+1=3Sn
∴Sn+1-Sn=3Sn
∴Sn+1=4Sn
若S1=0,则数列{an}为等差数列;
若S1≠0,则数列{Sn}为首项为S1,公比为4的等比数列,∴Sn=S1•4n-1
此时an=Sn-Sn-1=3S1•4n-2(n≥2),即数列从第二项起,后面的项组成等比数列.
综上,数列{an}可能为等差数列,但不会为等比数列.
故选C.
点评:本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案