精英家教网 > 高中数学 > 题目详情

设函数
⑴ 求不等式的解集;
⑵ 如果关于的不等式上恒成立,求实数的取值范围.

(1)(2)

解析试题分析:(1)利用分类讨论思想去掉绝对值,得到分段函数,逐一求解;(2)构造函数采用数形结合思想,借助两个函数图象进行比较分析.
试题解析:(1)                          (2分)
时,,则
时,,则
时,,则.
综上可得,不等式的解集为.                                    (5分)
(2) 设,由函数的图像与的图像可知:
时取最小值为6,时取最大值为
恒成立,则.                                    (10分)
考点:1.不等式的相关知识;2.绝对值不等式;3.不等式证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,画出函数的简图,并指出的单调递减区间;
(2)若函数有4个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,解不等式
(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(1)当,解不等式
(2)当时,若,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)求函数的单调区间;
(Ⅱ)当时,函数恒成立,求实数的取值范围;
(Ⅲ)设正实数满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域是的导函数,且
内恒成立.
求函数的单调区间;
,求的取值范围;
(3) 设的零点,,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)求函数的单调区间;
(2)若函数对定义域内的任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案