精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=(x﹣t)|x|(t∈R).
(1)当t=2时,求函数f(x)的单调性;
(2)试讨论函数f(x)的单调区间;
(3)若t∈(0,2),对于x∈[﹣1,2],不等式f(x)>x+a都成立,求实数a的取值范围.

【答案】
(1)解:当t=2时,f(x)=(x﹣t)|x|=

根据二次函数的图像与性质可得:

f(x)在(﹣∞,0)上单调递增,(0,1)上单调递减,(1,+∞)上单调递增.


(2)解:f(x)=

当t>0时,f(x)的单调增区间为[ ,+∞),(﹣∞,0],单调减区间为[0, ],

当t=0时,f(x)的单调增区间为R

当t<0时,f(x)的单调增区间为[0,+∞),(﹣∞, ],单调减区间为[


(3)解:设g(x)=f(x)﹣x=

x∈[0,2]时,∵ ∈(0,2),∴gmin(x)=g( )=﹣

x∈[﹣1,0]时,∵g(﹣1)=﹣t,g(0)=0,∴gmin(x)=﹣t

故只须t∈(0,2),使得: 成立,即

所以a≤﹣


【解析】(1)当t=2时,f(x)=(x﹣t)|x|= ,作出其图像,利用二次函数的单调性可求函数f(x)的单调性;(2)分t>0、t=0、t<0三类讨论,可求得函数f(x)的单调区间;(3)设g(x)=f(x)﹣x= ,依题意,可求得gmin(x)=﹣t,只须t∈(0,2),使得: 成立,解之即可求得实数a的取值范围.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn , 且满足an2﹣2Sn=2﹣an(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I)求曲线C的极坐标方程;
(Ⅱ)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3ax. (Ⅰ)若函数f(x)在x=1处的切线斜率为2,求实数a;
(Ⅱ)若a=1,求函数f(x)在区间[0,3]的最值及所对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的条件.(填“充要条件、充分不必要条件、必要不充分条件、即不充分也不必要条件”)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},则(RA)∩B=(
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知cos2A+ =2cosA.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为: ,直线的方程为

)当时,求直线被圆截得的弦长

)当直线被圆截得的弦长最短时,求直线的方程

)在()的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是

查看答案和解析>>

同步练习册答案