一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 .
【答案】
分析:设圆锥的半径为R,高为H,母线与轴所成角为θ,求出圆锥的高,利用体积相等,求出2θ的余弦值即可.
解答:解:设圆锥的半径为R,高为H,母线与轴所成角为θ,则圆锥的高 H=R•ctgθ
圆锥的体积 V
1=
πR
2•H=
πR
3ctgθ
半球的体积 V
2=
πR
3
∵V
1=V
2即:
πR
3ctgθ=
πR
3
∴ctgθ=2
∴cos2θ=
故答案为:
.
点评:本题考查旋转体(圆柱、圆锥、圆台),棱柱、棱锥、棱台的体积,球的体积和表面积,考查计算能力,是基础题.