精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

Ⅰ)讨论函数的单调性;

Ⅱ)若函数x=2处的切线斜率为,不等式对任意恒成立,求实数的取值范围;

【答案】1)见解析(2

【解析】【试题分析】(1求得函数定义域,对函数求导,对分类讨论函数的单调区间.2先利用函数在处切线的斜率为求得,然后对原不等式分离常数,得到,将不等式右边构造函数,利用导数求得函数的最小值,由此求得的取值范围.

【试题解析】

解:(1函数的定义域为

时, ,从而,故函数上单调递减

时,若,则,从而

,则,从而

故函数上单调递减,在上单调递增;

Ⅱ)求导数:

,解得a=1

所以,即

由于,即.

,则

时, ;当时,

上单调递减,在上单调递增;

,所以实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图像如图所示,则下列结论中一定成立的是(  )

A. 函数f(x)有极大值f(2)和极小值f(1) B. 函数f(x)有极大值f(-2)和极小值f(1)

C. 函数f(x)有极大值f(2)和极小值f(-2) D. 函数f(x)有极大值f(-2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究患肺癌与是否吸烟有关,某肿瘤机构随机抽取了40人做相关调查,其中不吸烟人数与吸烟人数相同,已知吸烟人数中,患肺癌与不患肺癌的比为;不吸烟的人数中,患肺癌与不患肺癌的比为.

(1)现从患肺癌的人中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行调查,求这两人都是吸烟患肺癌的概率;

(2)是否有99.9%的把握认为患肺癌与吸烟有关?

附: ,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线 的右焦点为 ,右顶点为 ,( 为原点)

(1)求双曲线 的方程;

(2)若直线 与双曲线恒有两个不同的交点 ,且,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点AB,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为(   )

A. y2=9x B. y2=6x C. y2=3x D. y2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数的极小值为,若恒成立,求满足条件的最小整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知短轴长为2的椭圆直线的横、纵截距分别为,且原点到直线的距离为

1)求椭圆的方程;

2)直线经过椭圆的右焦点且与椭圆交于两点,若椭圆上存在一点满足,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

查看答案和解析>>

同步练习册答案