精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=9,则f(2016)的值为(  )
A.9B.-9C.3D.-3

分析 利用诱导公式结合已知条件化简求解即可.

解答 解:函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=9,
可得asinα+bcosβ=9,
f(2016)=asin(2016π+α)+bcos(2016π+β)=asinα+bcosβ=9,
故选:A.

点评 本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求下列函数的定义域:
(1)f(x)=$\frac{5-x}{\sqrt{x-2}}$;
(2)f(x)=$\frac{\sqrt{x-2}}{5-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间(-5,5)内随机地取出一个实数a,使得不等式2+a-a2>0成立的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{5}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知2a•cosB+c•cosB+b•cosC=0,
(1)求角B;
(2)若sinA=3sinC,$b=\sqrt{13}$,求a与c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某学校组织高一高二两个年级的50名学生干部利用假期参加社会实践活动,活动内容是:①到社会福利院慰问孤寡老人;②到车站做义工,帮助需要帮助的旅客.各位同学根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
到社会福利院慰问老人到车站做义工总计
高一111627
高二15823
总计262450
(1)用分层抽样的方法在到车站做义工的同学中随机抽取6名,求在高二年级的学生中应抽取几名?
(2)在(1)中抽取的6名同学中任取2名,求选到的同学为高二年级学生人数的数学期望;
(3)如果“到社会福利院慰问老人”与“到车站做义工”是两个分类变量,并且计算出随机变量K2=2.981,那么,你有多大把握认为选择到社会福利院慰问老人与到车站做义工是与年级有关系的?
参考数据P(K2≥k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,不正确的是(  )
A.①可能是分层抽样,也可能是系统抽样
B.②可能是分层抽样,不可能是系统抽样
C.③可能是分层抽样,也可能是系统抽样
D.④可能是分层抽样,也可能是系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b,c,d成等比数列,且曲线y=x2-2x+3的顶点坐标为(b,d),则a+c=(  )
A.$\frac{3}{2}$B.$\frac{3\sqrt{2}}{2}$C.-$\frac{3\sqrt{2}}{2}$D.±$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设P:实数x满足x2-4ax+3a2?0,q:实数x满足|x-3|<1;
(1)若a=1,且PΛq为真,求实数x的取值范围;
(2)若a>0,且非P是非q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年08月22日至2015年08月30日在北京举行国际田联世界田径锦标赛,其中50名运动员在一次百米测试中,成绩全部介于13秒与18秒之间,来自牙买加的运动员博尔特取得最好的成绩.将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15)…第五组[17,18],
如图是按上述分组方法得到的频率分布直方图
(1)若成绩大于或等于14秒且小于16秒的认为良好,求50名运动员在这次百米测试中成绩良好的人数;
(2)设m,n表示50名运动员中某两名运动员的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m-n|>1”的概率.

查看答案和解析>>

同步练习册答案