精英家教网 > 高中数学 > 题目详情
11.已知条件p:?m∈[-1,1]使不等式a2-5a+5≥m+2成立;条件q:x2+ax+2=0有两个负数根,若p∨q为真,且p∧q为假,求实数a的取值范围.

分析 利用p∨q为真,p∧q为假,说明p,q一真一假.求出命题p:得到a≤1或a≥4.对于条件q,得到$a≥2\sqrt{2}$,然后推出a的取值范围.

解答 解:∵p∨q为真,p∧q为假,∴p,q一真一假.
由题设知,对于条件p,
∵m∈[-1,1],∴m+2∈[1,3],
∵不等式a2-5a+5≥1成立,
∴a2-5a+4≥0,解得a≤1或a≥4.
对于条件q,∵x2+ax+2=0有两个负数解,
∴$\left\{{\begin{array}{l}{△={a^2}-8≥0}\\{{x_1}+{x_2}=-a<0}\end{array}}\right.$,∴$a≥2\sqrt{2}$,…(8分)
若p真q假,则a≤1;若p假q真,则$2\sqrt{2}≤a<4$,
∴a的取值范围是:a≤1或$2\sqrt{2}≤a<4$,…(10分)

点评 本题考查命题的真假的判断,复合命题的真假,考查逻辑推理能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在△ABC中,点D在BC边上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.
(1)求sin∠C的值;
(2)若BD=5,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在正方体ABCD-A1B1C1D1中,E为A1B1的中点,则异面直线AE与A1D所成的角的余弦值为$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则$\frac{{S}_{2}}{{S}_{4}}$=(  )
A.-$\frac{1}{2}$B.$\frac{14}{5}$C.7D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a>b,则下列不等式成立的是(  )
A.a2+b2>abB.$\frac{b-a}{ab}$<0C.a2>b2D.2a<2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{1}{x}ln[\sqrt{{x^2}-3x+2}+\sqrt{-{x^2}-3x+4}]$的定义域是(  )
A.[-4,0)∪(0,1)B.[-4,0)∪(0,1]C.(-4,0)∪(0,1)D.(-∞,-4)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出命题:
①函数$y=cos(\frac{3}{2}x+\frac{π}{2})$是奇函数;
②若α、β是第一象限角且α<β,则tanα<tanβ;
③$y=2sin\frac{3}{2}x$在区间$[-\frac{π}{3},\frac{π}{2}]$上的最小值是-2,最大值是$\sqrt{2}$;
④$x=\frac{π}{8}$是函数$y=sin(2x+\frac{5}{4}π)$的一条对称轴.
其中正确命题的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|1<x<3},集合B={x|x2-ax<0}.
(1)若a=2,求A∩B;
(2)若“x∈A”是“x∈B”的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,内角A,B,C的对边分别为a,b,c.已知sinA=2sinC-$\sqrt{3}$sinB,且ab=12,则△ABC的面积的最大值为(  )
A.2B.4C.6D.8

查看答案和解析>>

同步练习册答案