精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知椭圆的离心率为,右焦点到右准线的距离为3.(椭圆的右准线方程为

1)求椭圆的标准方程;

2)设过的直线与椭圆相交于两点.已知被圆截得的弦长为,求的面积.

【答案】1;(2

【解析】

1)根据题意可得 ,结合即可求解.

2)直线l的方程为xmy+1,将直线与椭圆联立,利用弦长公式表示出|PQ|,再利用点到直线的距离求出圆心到直线的距离,结合圆截得的弦长为,可求出m21,根据三角形的面积公式即可求解.

1)解:由题意知

因为 ,解得a24b23

所以椭圆的方程为: 1

2)解:由题意知直线l的斜率不为0,由(1)知F10),

设直线l的方程为xmy+1Pxy),Qx'y'),

联立直线l与椭圆的方程整理得(4+3m2y2+6my90

所以y+y' yy'

所以|PQ|

因为圆O:x2+y24l的距离d

被圆O:x2+y24截得的弦长为

整理得1444),解得m21

所以d |PQ|

所以SOPQ .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2015年1月至2017年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()

A. 年接待游客量逐年增加

B. 各年的月接待游客量高峰期在8月

C. 2015年1月至12月月接待游客量的中位数为30万人

D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条直线上依次有三点.一只猎犬在点发现一大两小三只兔子从点向兔穴(点)前行,立即向它们追去.当兔子发现猎犬追赶后,急忙向兔穴奔跑,大兔为了提高速度,可叼着一只小兔奔跑(速度不变,且叼起与放下小兔所耽误的时间不计).已知,猎犬、大兔、小兔奔跑的速度分别为,兔子前行的速度为.则三只兔子至多在离开点______时发现猎犬,才能恰在猎犬追上自己之前全部跑进兔穴.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形和矩形所在的平面互相垂直,是线段的中点.

1)求证平面

2)求二面角的大小;

3)试在线段上一点,使得所成的角是60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;

2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取5人.若从这5人中随机选取3人到火车站迎接新生,求选取的3人中恰好有1名女生的概率.

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下结论:

①命题“若,则”的逆否命题“若,则”;

②“”是“”的充分条件;

③命题“若,则方程有实根”的逆命题为真命题;

④命题“若,则”的否命题是真命题.

其中错误的是__________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为等边三角形,.

(Ⅰ)若点的中点,求证:平面

(Ⅱ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高血压高血糖和高血脂统称“三高”.如图是西南某地区从2010年至2016年患“三高”人数y(单位:千人)的折线图.

1)由折线图看出,可用线性回归模型拟合的关系,请求出相关系数(精确到0.01)并加以说明;

2)建立关于的回归方程,预测2018年该地区患“三高”的人数.

参考数据:.参考公式:相关系数 回归方程 中斜率和截距的最小二乘法估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)函数处的切线与直线垂直,求实数的值;

2)若函数在定义域上有两个极值点,且.

①求实数的取值范围;

②求证:.

查看答案和解析>>

同步练习册答案