【题目】已知函数.
(1)若函数的极小值为0,求的值;
(2)且,求证:.
【答案】(1).(2)见解析.
【解析】
(1)根据导数在定义域内是否有零点确定分类讨论的标准为和,然后分别讨论导数的符号,确定当时在处取得极小值,再通过讨论的单调性,从而由有唯一解.
(2)一方面,可以将问题等价转化为证当时,恒成立问题,然后构造函数,通过其导数确定单调性,从而使问题得证;另一方面,也可以直接构造函数(),由其二阶导数以及的范围确定一阶导数的单调性,从而确定的符号,进而确定的单调性,可得,使问题得证.
(Ⅰ)因为
所以,
当时,,函数在定义域上递增,不满足条件;
当时,函数在上递减,在上递增,
故在取得极小值0,,
令,,所以在(0,1)单调递增,
在单调递减,故,的解为,
故.
(2)证法1:由,
,所以只需证当时,恒成立.
令
由(1)可知,令得
在上递增,故,所以命题得证.
证法2:,
设(),则,
则,又,,得,
所以单调递增,得,
所以单调递增,得,得证.
科目:高中数学 来源: 题型:
【题目】以下四个命题:①设,则是的充要条件;②已知命题、、满足“或”真,“或”也真,则“或”假;③若,则使得恒成立的的取值范围为{或};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若 表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:
(1)对一盏灯进行开灯或关灯一次叫做一次操作;
(2)灯在任何情况下都可以进行一次操作;对任意的,要求灯的左边有且只有灯是开灯状态时才可以对灯进行一次操作.如果所有灯都处于开灯状态,那么要把灯关闭最少需要_____次操作;如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,椭圆:经过点.
(1)求椭圆的标准方程;
(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于,两个相异点,证明:面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点,直线与y轴交于点P.且与椭圆交于A,B两点.A为椭圆的右顶点,B在x轴上的射影恰为。
(1)求椭圆E的方程;
(2)M为椭圆E在第一象限部分上一点,直线MP与椭圆交于另一点N,若,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校在学校内招募了名男志愿者和名女志愿者,将这名志愿者的身高编成如茎叶图所示(单位:),若身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”。
(Ⅰ)根据数据分别写出男、女两组身高的中位数;
(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?
(Ⅲ)在(Ⅱ)的基础上,从这人中选人,那么至少有一人是“高个子”的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 下列结论错误的是
A. 命题:“若,则”的逆否命题是“若,则”
B. “”是“”的充分不必要条件
C. 命题:“, ”的否定是“, ”
D. 若“”为假命题,则均为假命题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com