精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若函数的极小值为0,求的值;

(2),求证:.

【答案】(1).(2)见解析.

【解析】

1)根据导数在定义域内是否有零点确定分类讨论的标准为,然后分别讨论导数的符号,确定当时在处取得极小值,再通过讨论的单调性,从而由有唯一解.

2)一方面,可以将问题等价转化为证当时,恒成立问题,然后构造函数,通过其导数确定单调性,从而使问题得证;另一方面,也可以直接构造函数),由其二阶导数以及的范围确定一阶导数的单调性,从而确定的符号,进而确定的单调性,可得,使问题得证.

)因为

所以

时,,函数在定义域上递增,不满足条件;

时,函数上递减,在上递增,

取得极小值0

,所以在(01)单调递增,

单调递减,故的解为

.

2)证法1:由

,所以只需证当时,恒成立.

由(1)可知,令

上递增,故,所以命题得证.

证法2

),则

,又,得

所以单调递增,得

所以单调递增,得,得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下四个命题:①设,则的充要条件;②已知命题满足“”真,“”也真,则“”假;③若,则使得恒成立的的取值范围为{};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 表示从左到右依次排列的9盏灯,现制定开灯与关灯的规则如下:

(1)对一盏灯进行开灯或关灯一次叫做一次操作;

(2)灯在任何情况下都可以进行一次操作;对任意的,要求灯的左边有且只有是开灯状态时才可以对灯进行一次操作.如果所有灯都处于开灯状态,那么要把灯关闭最少需要_____次操作;如果除灯外,其余8盏灯都处于开灯状态,那么要使所有灯都开着最少需要_____次操作.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

(1)求证:平面

(2)求平面与平面夹角的余弦值,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点,直线y轴交于点P.且与椭圆交于AB两点.A为椭圆的右顶点,Bx轴上的射影恰为

1)求椭圆E的方程;

2M为椭圆E在第一象限部分上一点,直线MP与椭圆交于另一点N,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校在学校内招募了名男志愿者和名女志愿者,将这名志愿者的身高编成如茎叶图所示(单位:),若身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”。

(Ⅰ)根据数据分别写出男、女两组身高的中位数;

(Ⅱ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则各抽几人?

(Ⅲ)在(Ⅱ)的基础上,从这人中选人,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

同步练习册答案