精英家教网 > 高中数学 > 题目详情

【题目】已知实数,设函数

1)求函数的单调区间;

2)当时,若对任意的,均有,求的取值范围.

注:为自然对数的底数.

【答案】1内单调递减,在内单调递增;(2

【解析】

(1)求导后取出极值点,再分,两种情况进行讨论即可.

(2)时得出的一个取值范围,再讨论时的情况,再对时构造函数两边取对数进行分析论证恒成立.

(1)由,解得

①若,则当时,,故内单调递增;

时,,故内单调递减.

②若,则当时,,故内单调递增;

时,,故内单调递减.

综上所述,内单调递减,在内单调递增.

(2),即

,得,则

时,不等式显然成立,

时,两边取对数,即恒成立.

令函数,即内恒成立.

,得

故当时,,单调递增;

时,,单调递减.

因此

令函数,其中,

,得,

故当时,,单调递减;当时,,单调递增.

,,

故当时,恒成立,因此恒成立,

即当时,对任意的,均有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若恒成立,.的最大值;

2)若函数有且只有一个零点,且满足条件的,使不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点,点,动圆轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点均不同于点),且交于点,设点的轨迹为曲线.

(1)证明:为定值,并求的方程;

(2)设直线的另一个交点为,直线交于两点,当三点共线时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东京夏季奥运会推迟至2021723日至88日举行,此次奥运会将设置4 100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出22女共计4名运动员参加比赛,按照仰泳蛙泳蝶泳自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有(

A.144B.8C.24D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角ABC中,a2_______,求ABC的周长l的范围.

在①(﹣cossin),(cossin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x)f(A)

注:这三个条件中任选一个,补充在上面问题中并对其进行求解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足:对任何,都有,且当时,.在下列结论:

1)对任何,都有;(2)任意,都有

3)函数的值域是

4函数在区间上单调递减的充要条件是存在,使得

其中正确命题是(

A.1)(2B.1)(2)(3C.1)(3)(4D.2)(3)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图两个同心球,球心均为点,其中大球与小球的表面积之比为3:1,线段是夹在两个球体之间的内弦,其中两点在小球上,两点在大球上,两内弦均不穿过小球内部.当四面体的体积达到最大值时,此时异面直线的夹角为,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两个非零平面向量则有

①若

②若

③若则存在实数使得

④若存在实数使得四个命题中真命题的序号为 __________.(填写所有真命题的序号)

【答案】①③④

【解析】逐一考查所给的结论:

①若,则,据此有:,说法①正确;

②若,则

,说法②错误;

③若,则,据此有:

由平面向量数量积的定义有:

则向量反向,故存在实数,使得,说法③正确;

④若存在实数,使得,则向量与向量共线,

此时

若题中所给的命题正确,则

该结论明显成立.即说法④正确;

综上可得:真命题的序号为①③④.

点睛:处理两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.

型】填空
束】
17

【题目】已知在.

(1)求角的大小

(2)设数列满足项和为的值.

查看答案和解析>>

同步练习册答案