精英家教网 > 高中数学 > 题目详情
已知f(x)=sin
π
3
(x+1)-
3
cos
π
3
(x+1),则f(1)+f(2)+…+f(2014)=
 
分析:利用辅助角公式可得f(x)=2sin[
π
3
(x+1)-
π
3
]=2sin
π
3
x,从而可求f(1)+f(2)+…+f(6)=0,利用函数的周期性即可求得答案.
解答:解:∵f(x)=sin
π
3
(x+1)-
3
cos
π
3
(x+1)
=2[
1
2
sin
π
3
(x+1)-
3
2
cos
π
3
(x+1)]
=2sin[
π
3
(x+1)-
π
3
]
=2sin
π
3
x,
∴其最小正周期T=
π
3
=6,
∴f(1)+f(2)+…+f(6)=2(sin
π
3
+sin
3
+sinπ+sin
3
+sin
3
+sin2π)=0,
∴f(1)+f(2)+…+f(2014)
=f(1)+f(2)+…+f(2010)+f(2011)+f(2012)+f(2013)+f(2014)
=335×0+f(1)+f(2)+f(3)+f(4)
=2(sin
π
3
+sin
3
+sinπ+sin
3

=2(
3
2
+
3
2
+0-
3
2

=
3

故答案为:
3
点评:本题考查两角和与差的正弦函数,考查三角函数的周期性及其求法,考查三角函数的化简求值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则f(x)的图象(  )
A、与g(x)的图象相同
B、与g(x)的图象关于y轴对称
C、向左平移
π
2
个单位,得到g(x)的图象
D、向右平移
π
2
个单位,得到g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,则f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的图象与y=-1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),则f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinπx.
(1)设g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)设h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此时x值的集合.

查看答案和解析>>

同步练习册答案