精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=exsinxgx)为fx)的导函数,

1)求fx)的单调区间;

2)当x[π],证明:fx+gx)(πx≥0.

【答案】1)增区间为,单调递减区间为;(2)见解析

【解析】

(1) 求出函数的导函数,可得函数的单调区间.
(2) 要证,即证sinx﹣(sinx+cosx)(xπ≥0,设讨论其单调性得到函数的最小值即可证明.

1

,即时,fx)>0

,即时,fx)<0

故函数fx)的单调递增区间为;单调递减区间为

2)证明:由(1)知,

x[π]时,要证,即证sinx﹣(sinx+cosx)(xπ≥0

,则hx)=﹣(cosxsinx)(xπ)﹣sinx0

故函数hx)在上为减函数,

hxhπ)=0,即sinx﹣(sinx+cosx)(xπ≥0,即得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),经过变换后曲线变换为曲线.

1)在以为极点,轴的非负半轴为极轴(单位长度与直角坐标系相同)的极坐标系中,求的极坐标方程;

2)求证:直线与曲线的交点也在曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列均为各项都不相等的数列,的前n项和,

,求的值;

是公比为的等比数列,求证:数列为等比数列;

的各项都不为零,是公差为d的等差数列,求证:成等差数列的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点集A{xy|x2+y2≤1}B{xy|x≤4y≥03x4y≥0},则点集Q{xy|xx1+x2yy1+y2,(x1y1)∈A,(x2y2)∈B}所表示的区域的面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx)=a|sinx|+|cosx|)﹣sin2x1aR

1)写出函数 fx)的最小正周期(不必写出过程);

2)求函数 fx)的最大值;

3)当a1时,若函数 fx)在区间(0kπ)(kN*)上恰有2015个零点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的直角顶点轴上,点为斜边的中点,且平行于轴.

(Ⅰ)求点的轨迹方程;

(Ⅱ)设点的轨迹为曲线,直线的另一个交点为.以为直径的圆交轴于即此圆的圆心为,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于PQ两点.

(1)求曲线C的直角坐标方程及直线l的参数方程;

(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)若有两个不同的极值点,且,若不等式恒成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

1)当时,求的单调区间;

2)设函数,若的唯一极值点,求

查看答案和解析>>

同步练习册答案