精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的标准方程是,设是椭圆的左焦点,为直线上任意一点,过的垂线交椭圆于点.

1)证明:线段平分线段(其中为坐标原点);

2)当最小时,求点的坐标.

【答案】1)证明见解析;(2.

【解析】

1)由椭圆的标准方程可得的坐标,设点坐标为,可得直线的斜率,讨论两种情况,设直线的方程是;联立直线与椭圆方程,即可用表示点的坐标,即可证明结论.

2)由(1)结合弦长公式,表示出,即可得,结合基本不等式即可求得最小值及最小值时的值,进而得点的坐标.

1)证明:椭圆的标准方程是

是椭圆的左焦点,为直线上任意一点,

所以得坐标为,设点坐标为

则直线的斜率

时,直线的斜率

直线的方程是

时,直线的方程

也符合方程的形式,

,将直线的方程与椭圆的方程联立得:

消去

的中点的坐标为

所以直线的斜率,又因为直线的斜率

所以点在直线上,因此线段平分线段.

2)由(1)知

所以

当且仅当

时等号成立,此时取得最小值,

点的坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校在一块圆心角为,半径等于的扇形空旷地域(如图)组织学生进行野外生存训练,已知在OAB处分别有50名,150名,100名学生,现要在道路OB(包括OB两点)上设置集合地点P,要求所有学生沿最短路径到P点集合,则所有学生行进的最短总路程为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天或每月行走的步数,同时也可以和其他用户进行运动量的或点赞.加入微信运动后,为了让自己的步数能领先于朋友,人们运动的积极性明显增强,下面是某人20181月至201811月期间每月跑步的平均里程(单位:十公里)的数据,绘制了下面的折线图.

根据折线图,下列结论正确的是(

A. 月跑步平均里程的中位数为月份对应的里程数

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在

D. 月至月的月跑步平均里程相对于月至月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①成等差数列;②成等比数列;③三个条件中任选一个,补充在下面的问题中,并加以解答.

已知的内角所对的边分别是,面积为.若__________,且,试判断的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,平面为棱的中点

1)证明:

2)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象,需将函数的图象上所有的点(

A.向右平移个单位长度后,再将图象上所有点的横坐标缩小到原来的,纵坐标不变

B.向左平移个单位长度后,再将图象上所有点的横坐标缩小到原来的,纵坐标不变

C.向左平移个单位长度后,再将图象上所有点的横坐标伸长到原来的2倍,纵坐标不变

D.向右平移个单位长度后,再将图象上所有点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其准线的距离为.

1)求抛物线的方程;

2)如图为抛物线上三个点,,若四边形为菱形,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区平面图如图1所示,为边界上的点.已知边界是一段抛物线,其余边界均为线段,且,抛物线顶点的距离.以所在直线为轴,所在直线为轴,建立平面直角坐标系.

1)求边界所在抛物线的解析式;

2)如图2,该景区管理处欲在区域内围成一个矩形场地,使得点在边界上,点在边界上,试确定点的位置,使得矩形的周长最大,并求出最大周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):

现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.

1)求的值,并填写下表(2000位参与投票分数和人数分布统计);

满意程度(分数)

人数

2)求市民投票满意程度的平均分(各分数段取中点值);

3)若满意程度在5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.

查看答案和解析>>

同步练习册答案