精英家教网 > 高中数学 > 题目详情
20、证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增加的.
分析:结合已知条件,检验函数的的定义域关于原点对称,检验f(-x)=(-x)2+1=f(x),进而可证明f(x)是偶函数,利用函数的单调性的定义,只要证明当任意x1<x2∈[0,+∞)都有f(x1)<f(x2)证明函数的单调性
解答:证明:∵f(x)的定义域为R,
∴它的定义域关于原点对称,f(-x)=(-x)2+1=f(x)
所以f(x)是偶函数.
任取x1,x2且x1<x2,x1与x2∈[0,+∞)则f(x1)-f(x2)=x12+1-(x22+1)=x12-x22=(x1-x2)(x1+x2)<0
∴f(x1)<f(x2)∴f(x)在[0,+∞)上是增加的.
点评:本题主要考查了函数奇偶性的判断及函数在区间上的单调性的证明,主要还是定义的基本运用,熟练掌握基础知识、基本方法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=(x-a)2,g(x)=x,x∈R,a为实常数.
(1)若a>0,设F(x)=
f(x)g(x)
,x≠0,用函数单调性的定义证明:函数F(x)在区间[a,+∞)上是增函数;
(2)设关于x的方程f(x)=|g(x)|在R上恰好有三个不相等的实数解,求a的值所组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
4
x
(x>0)在区间
(0,2)
(0,2)
上递减;并利用单调性定义证明.函数f(x)=x+
4
x
(x>0)在区间
(2,+∞)
(2,+∞)
上递增.当x=
2
2
时,y最小=
4
4

(2)函数f(x)=x+
4
x
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)定义:对于函数f(x),x∈M⊆R,若f(x)<f'(x)对定义域内的x恒成立,则称函数f(x)为?函数.
(Ⅰ)证明:函数f(x)=ex1nx为?函数.
(Ⅱ)对于定义域为(0,+∞)的?函数f(x),求证:对于定义域内的任意正数x1,x2,…,xn,均在f(1n(x1+x2+…+xn))>f(1nx1)+f(1nx2).+…+f(1nxn

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:函数f(x)=lnx+2x-6在区间(2,3)内有唯一的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
1-
1
x
,x>0
(a-1)x+1,x≤0

(1)证明:函数f(x)在(0,+∞)上单调递增;
(2)求函数f(x)的零点.

查看答案和解析>>

同步练习册答案