【题目】已知函数 的部分图象如图所示.
(1)求函数的解析式,并求出的单调递增区间;
(2)将函数的图象上各个点的横坐标扩大到原来的2倍,再将图象向右平移个单位,得到的图象,若存在使得等式成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知动点满足: .
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线交于两点,点关于轴的对称点为(点与点不重合),证明:直线恒过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 ,g(x)=x3﹣x2﹣3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的 ,都有f(s)≥g(t)成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 有一个零点为4,且满足.
(1)求实数和的值;
(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;
(3)讨论函数在上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为 (其中为参数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.
(1)把曲线的方程化为普通方程, 的方程化为直角坐标方程;
(2)若曲线, 相交于两点, 的中点为,过点做曲线的垂线交曲线于两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com