精英家教网 > 高中数学 > 题目详情
9.命题“?x∈R,f(x)>0”的否定为(  )
A.?x0∈R,f(x0)>0B.?x∈R,f(x)<0C.?x0∈R,f(x0)≤0D.?x∈R,f(x)≤0

分析 根据全称命题的否定要改成存在性命题的原则,可写出原命题的否定

解答 解:原命题为“?x∈R,f(x)>0
∵原命题为全称命题
∴其否定为存在性命题,且不等号须改变
∴原命题的否定为:?x0∈R,f(x0)≤0
故选:C

点评 本题考查命题的否定,本题解题的关键是熟练掌握全称命题:“?x∈A,P(x)”的否定是特称命题:“?x∈A,非P(x)”,熟练两者之间的变化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列函数为偶函数的是(  )
A.y=x+1B.y=x2C.y=x2+xD.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}是等差数列,已知${a_1}=\frac{5}{6},{a_{15}}=-\frac{3}{2}$,则Sn=$\frac{-{n}^{2}+11n}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{4sinA-\sqrt{7}cosC}}{c}=\frac{{\sqrt{7}cosB}}{b}$.
(1)求sinB的值;
(2)若a,b,c成等差数列,且公差大于0,求cosA-cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知等差数列{an}的前n项和为Sn,若a1+a4+a7=6,则S7=(  )
A.10B.12C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知D是△ABC边BC上一点.
(1)若B=45°,且AB=DC=7,求△ADC的面积;
(2)当∠BAC=90°时,若BD:DC:AC=2:1:$\sqrt{3}$,且AD=2$\sqrt{2}$,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=0,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,平面PAD⊥平面ABCD,ABCD是边长为2的菱形,PA=PD,且∠APD=90°,∠DAB=60°.
(I)若线段PC上存在一点M,使得直线PA∥平面MBD,试确定M点的位置,并给出证明;
(II)在第(I)问的条件下,求三棱锥C-DMB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)-1
(1)说明该函数图象可由y=sinx的图象经过怎样平移和伸缩变换得到的.
(2)求函数的最值及满足最值的x的取值集合.

查看答案和解析>>

同步练习册答案