精英家教网 > 高中数学 > 题目详情

【题目】已知圆和抛物线,圆与抛物线的准线交于两点,的面积为,其中的焦点.

(1)求抛物线的方程;

(2)不过原点的动直线交该抛物线于两点,且满足,设点为圆上任意一动点,求当动点到直线的距离最大时直线的方程.

【答案】(1);(2)

【解析】

1)由题意表示的面积,解出p值,即可求出抛物线的方程;

2)利用直线和抛物线的位置关系,建立方程组,进一步利用一元二次方程根与系数的关系建立等量关系,最后利用最大值求出直线的方程.

(1)由题意知,圆的标准方程为,圆心坐标为.

抛物线的焦点,准线方程为

代入圆方程,得

的面积为

,∴抛物线的方程为.

(2)设的直线方程为,联立方程组得:

,消去,整理得

,得.

由韦达定理得,①

.

由于,可得.

,②

将①代入②整理得.

由于,则直线过定点

时,圆心到直线的距离取得最大值,

此时,则直线的斜率为

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为 为椭圆的上顶点, 为等边三角形,且其面积为为椭圆的右顶点.

Ⅰ)求椭圆的方程;

Ⅱ)若直线与椭圆相交于两点(不是左、右顶点),且满足,试问:直线是否过定点?若过定点,求出该定点的坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点M0-2)、N(3,1),且圆心C在直线x+2y+1=0上.

(1)求圆C的方程;

(2)设直线ax-y+1=0与圆C交于AB两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过长期观测得到:在交通繁忙的时段,某公路段的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系为:.

1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?

2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(-,0),B(,0),直线MAMB交于点M,它们的斜率之积为常数m(m≠0),且△MAB的面积最大值为,设动点M的轨迹为曲线E.

(1)求曲线E的方程;

(2)过曲线E外一点QE的两条切线l1l2,若它们的斜率之积为-1,那么·是否为定值?若是,请求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据可知具有线性相关关系请建立关于的回归方程(系数精确到);

2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量, 则每位员工每日奖励100元; 则每位员工每日奖励150元; 则每位员工每日奖励200元.现已知该网站6月份日销量服从正态分布请你计算某位员工当月奖励金额总数大约多少元.(当月奖励金额总数精确到百分位)

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式

1)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

2)若随机变量服从正态分布 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆C和点,若在圆C上存在点P,使得,则半径r的取值范围是______

查看答案和解析>>

同步练习册答案
鍏� 闂�