A. | 2010 | B. | 2011 | C. | 2012 | D. | 2013 |
分析 由题意可得$\frac{1}{4}{a}_{2}+\frac{1}{2}{a}_{8}+\frac{1}{4}{a}_{4008}=1$,利用等差数列的性质变形得到a1+a2012=2.然后代入等差数列的前n项和得答案.
解答 解:∵点P、A、B、C共面,且$\overrightarrow{OP}$=$\frac{1}{4}$a2•$\overrightarrow{OA}$+$\frac{1}{2}$a8•$\overrightarrow{OB}$+$\frac{1}{4}$a4008•$\overrightarrow{OC}$,
∴由共面向量基本定理,可得$\frac{1}{4}{a}_{2}+\frac{1}{2}{a}_{8}+\frac{1}{4}{a}_{4008}=1$,
即a2+2a8+a4008=4,
∴(a2+a8)+(a8+a4008)=4,
即2a5+2a2008=4,
∴2(a5+a2008)=4,则a1+a2012=2.
∴S2012=$\frac{({a}_{1}+{a}_{2012})×2012}{2}=2012$.
故选:C.
点评 本题考查空间中四点共面的条件,考查等差数列的性质,训练了等差数列前n项和的求法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $y=\sqrt{x}$(x≥1) | B. | $y=\sqrt{-x}$(x≤-1) | C. | $y=\sqrt{x}$(x≥0) | D. | $y=\sqrt{-x}$(x≤0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com