精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的图象顶点为A(1,16),且图象在x轴上截得线段长为8.
(1)求函数f(x)的解析式;
(2)当x∈[0,2]时,关于x的函数g(x)=f(x)-(t-x)x-3的图象始终在x轴上方,求实数t的取值范围.
分析:(1)由题意可得函数的对称轴为x=1,结合已知函数在x轴上截得线段长为8,可得抛物线与x轴的交点坐标为(-3,0),(5,0),可设函数为f(x)=a(x+3)(x-5)(a<0),将(1,16)代入可求
(2)g(x)=f(x)-(t-x)x-3=(2-t)x+12,x∈[0,2],结合题意可得
g(0)>0
g(2)>0
,代入可求
解答:解:(1)∵二次函数图象顶点为(1,16),
∴函数的对称轴为x=1
∵在x轴上截得线段长为8,
∴抛物线与x轴的交点坐标为(-3,0),(5,0),…(2分)
又∵开口向下,设原函数为f(x)=a(x+3)(x-5)(a<0)…(4分)
将(1,16)代入得a=-1,…(6分)
∴所求函数f(x)的解析式为f(x)=-x2+2x+15.           …(7分)
(2)g(x)=f(x)-(t-x)x-3=(2-t)x+12,x∈[0,2]…(9分)
由g(x)得图象在x轴上方,根据一次函数的性质可得
g(0)>0
g(2)>0
,…(12分)
即-2t+16>0
解得t<8                    …(14分)
点评:本题主要考查了利用待定系数法求解二次函数的函数解析式,解题的关键是利用对称轴找出二次函数与x轴的交点坐标
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案