精英家教网 > 高中数学 > 题目详情
已知集合A={x|4-2k<x<2k-8},B={x|-k<x<k},若A⊆B,则实数k的取值范围是
 
考点:集合的包含关系判断及应用
专题:集合
分析:考察集合间的包含关系,注意空集.
解答: 解:当4-2k≥2k-8即k≤3时,A=Φ,A⊆B,
当k>3时,要使A⊆B,则有
-k≤4-2k
2k-8≤k
,解得3<k≤4
综上,k≤4.即k的取值范围是(-∞,4]
故答案为:(-∞,4]
点评:也可以利用数轴求解k>3的情况,数形结合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a:b:c=1:5:6,则sinA:sinB:sinC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的定义域都是R,f(x)是奇函数,g(x)是偶函数.
(1)判断F(x)=[f(x)]2-g(x)的奇偶性;
(2)如果f(x)+g(x)=2x+x,求函数f(x)和g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+b
x2+4
是奇函数(b∈R),若f(x)<a对一切实数x都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,x,x2,…xn-1前n项的和Sn=(  )
A、
1-xn
1-x
B、
1-xn-1
1-x
C、
1-xn+1
1-x
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4…),Sn为数列{bn}的前n项和,且4Sn=bnbn+1,b1=2(n=1,2,3…).
(1)求数列{bn},{an}的通项公式;
(2)设cn=bn2
1
3an
+
2
3
,求数列{cn}的前n项的和Pn
(3)(选做)证明:对一切n∈N*,有
n=1
an2
7
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-1|+|x-4|-a,a∈R.
(1)当a=-3,求f(x)≥9的解集;
(2)当f(x)>0在定义域R上恒成立时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=3an+2,n∈N*,a1=1,bn=an+1
(1)证明数列{bn}为等比数列.
(2)求数列{an}的通项公式an与前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

A.若不等式|2a-1|≤|x+
1
x
|对一切非零实数x恒成立,则实数a的取值范围是
 

B.如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,则线段AE的长为
 

C.在平面直角坐标系xOy中,已知圆C:
x=5cosθ-1
y=5sinθ+2
(θ为参数)和直线l:
x=4t+6
y=-3t-2
(t为参数),则直线l截圆C所得弦长为
 

查看答案和解析>>

同步练习册答案