精英家教网 > 高中数学 > 题目详情

【题目】正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________

【答案】

【解析】

设正方体ABCDA1B1C1D1的棱长为1,以D为原点建立空间直角坐标系Dxyz,利用向量法能求出二面角ABD1B1的大小为

解:设正方体ABCDA1B1C1D1的棱长为1

D为原点建立空间直角坐标系Dxyz

A100),B110),D1001),B1111),

0,-10),(﹣1,﹣11),001),

设平面ABD1的法向量

,取x1,得101),

设平面B1BD1的法向量abc),

,取a1,得1,﹣10),

设二面角ABD1B1的平面角为θ

cosθ=﹣|cos|

∴二面角ABD1B1的大小为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且,数列满足,对任意,都有.

1)求数列的通项公式;

2)令若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数.

(Ⅰ)当时,求的解集;

(Ⅱ)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,河的两岸分别有生活小区,其中三点共线,的延长线交于点,测得,若以所在直线分别为轴建立平面直角坐标系则河岸可看成是曲线(其中是常数)的一部分,河岸可看成是直线(其中为常数)的一部分.

1)求的值.

2)现准备建一座桥,其中分别在上,且的横坐标为.写出桥的长关于的函数关系式,并标明定义域;当为何值时,取到最小值?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切,设点为圆上一动点, 轴于,且动点满足,设动点的轨迹为曲线

(1)求曲线的方程;

(2)直线与直线垂直且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要条件;

(2)求实数a的一个值,使它成为MP={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)的数据如下表:

时间

5

11

25

种植成本

15

10.8

15

(1)根据上表数据,从下列函数:中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;

(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,下列结论中正确的是( )

A. B.

C. 是数列中的最大值 D. 数列无最小值

查看答案和解析>>

同步练习册答案