精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底时取得极值且有两个零点.

1求实数的取值范围;

2记函数的两个零点为,证明:

【答案】12见解析.

【解析】

试题分析:1 时取得极值,由的符号函数的单调性可知为函数的极大值,所以有两个零点等价于 ,解之即可;2 不妨设,由题意知,两式相加可得欲证,只需证明:,只需证明:,即证即可,设,则只需证明:,构造函数,证即可.

试题解析: 1

,且当时,,当时,

所以时取得极值,所以

所以,函数上递增,在上递减,

时,时,有两个零点

;.

2不妨设,由题意知

欲证,只需证明:,只需证明:

即证:

即证,设,则只需证明:

也就是证明:

单调递增,

,所以原不等式成立,故得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足, 已知轴重合时, .

1)求椭圆的方程;

2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,

说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为,通过块玻璃以后强度为.

)写出关于的函数关系式;

)通过多少块玻璃以后,光线强度减弱到原来的以下.lg3≈0.4771.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1是在定义域内的增函数,求的取值范围;

2若函数其中的导函数存在三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于某设备的使用年限与所支出的维修费用万元,有如下统计资料:

呈线性相关关系,试求:

1线性回归方程的回归系数

2估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量和中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于4800元的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率且椭圆经过点直线与椭圆交于不同的两点

(1)求椭圆的方程

(2)若的面积为1(为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得,1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:

1PA,PB,PC

21张奖券的中奖概率;

31张奖券不中特等奖且不中一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:

组号

1

2

3

4

5

温差

10

11

13

12

8

发芽数

23

25

30

26

16

该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.

1若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出关于的线性回归方程

2若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问1中所得的线性回归方程是否可靠?

参考公式:

查看答案和解析>>

同步练习册答案