精英家教网 > 高中数学 > 题目详情

【题目】如下图,在四棱柱中,点分别为的中点.

(1)求证: 平面

(2)若四棱柱是长方体,且,求平面与平面所成二面角的正弦值.

【答案】(1)详见解析;(2).

【解析】试题分析:(1)取的中点为,连结,要证线面平行,即证明平面外的线与平面内的线平行,所以证明是平行四边形,即证明;(2)以点为原点, 分别为 轴建立空间直角坐标系,分别求平面和平面的法向量,求法向量夹角的余弦值,再求正弦值.

试题解析:(1)设的中点为,连接.

的中点,∴,且.

又∵为四棱柱的棱的中点,

,且

∴四边形是平行四边形.∴.

又∵平面 平面,∴平面.

(2)根据四棱柱是长方体,建立如图所示的空间直角坐标系,设,由已知得.

,设平面的一个法向量为

.

,解得

是平面的一个法向量.

由已知容易得到是平面的一个法向量.

设平面与平面所成二面角的大小为,则.

,∴.

∴平面与平面所成二面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,在区间(﹣∞,0)上是增函数的是(
A.
B.y=|x﹣1|
C.y=x2﹣4x+8
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求b的值;
(2)判断函数f(x)在R上的单调性并加以证明;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求的单调区间;

(2)当时,若对任意,都有成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+2x+b>0(a≠0)的解集为 ,且a>b,则 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O:x2+y2=16及圆内一点F(﹣3,0),过F任作一条弦AB.
(1)求△AOB面积的最大值及取得最大值时直线AB的方程;
(2)若点M在x轴上,且使得MF为△AMB的一条内角平方线,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间上任取两个实数,则函数在区间上有且只有一个零点的概率是

A B C D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C作CD⊥AB于点D,求CD所在直线的方程.

查看答案和解析>>

同步练习册答案