精英家教网 > 高中数学 > 题目详情
19.抛物线x2=y上的点到直线y=2x+m的最短距离为$\sqrt{5}$,则m等于(  )
A.4B.-6C.4或-6D.-4或6

分析 利用点到直线的距离公式和二次函数的单调性即可得出.

解答 解:设M(a,a2),则点M到直线2x-y+m=0(a为常数)的距离
d=$\frac{|2a-{a}^{2}+m|}{\sqrt{5}}$=$\frac{(a-1)^{2}-m-1|}{\sqrt{5}}$≥$\frac{|m+1|}{\sqrt{5}}$=$\sqrt{5}$,
解得m=-6或4,
m=4不符合题意,应舍去.
∴m=-6.
故选B.

点评 熟练掌握点到直线的距离公式和二次函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-mx2-2x
(1)若m=0,讨论f(x)的单调性;
(2)若m<$\frac{e}{2}$-1时,证明:当x∈[0,+∞)时,f(x)>$\frac{e}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.记集合M={x||x|>2},N={x|x2-3x≤0},则N∩M=(  )
A.{x|2<x≤3}B.{x|x>0或x<-2}C.{x|0≤x<2}D.{x|-2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若$sinα-cosβ=\frac{1}{2}$,$cosα-sinβ=\frac{1}{3}$,则sin(α+β)=(  )
A.$\frac{13}{36}$B.$\frac{59}{36}$C.$\frac{59}{72}$D.$\frac{5}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m 恒成立;命题q:存在x∈[-1,1],使得m≤ax 成立.
(1)若p为真命题,求m 的取值范围;
(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x+a,x≥1\\{x^2}+3ax+2{a^2},x<1\end{array}\right.$,
①若a=1,f(x)的最小值是-$\frac{1}{4}$;
②若f(x)恰好有2个零点,则实数a的取值范围是[-1,-$\frac{1}{2}$]∪[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,若复数z=a2-1+(1+a)i(其中a∈R)为纯虚数,则$\frac{z}{2-i}$=(  )
A.$\frac{4}{5}-\;\;\frac{2}{5}i$B.$-\;\;\frac{2}{5}+\frac{4}{5}i$C.$\frac{4}{5}+\frac{2}{5}i$D.$-\;\;\frac{2}{5}-\;\;\frac{4}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2sin(2x+$\frac{π}{3}$)的图象(  )
A.关于原点对称B.关于y轴对称
C.关于直线x=$\frac{π}{6}$对称D.关于点(-$\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则A∩B=(  )
A.B.$\{x|\frac{1}{2}<x≤1\}$C.{x|x<1}D.{x|0<x<1}

查看答案和解析>>

同步练习册答案