精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在正三棱柱ABC—A1B1C1中,BB1=2,BC=2,D为B1C1的中点。
(Ⅰ)证明:B1C⊥面A1BD
(Ⅱ)求二面角B—AC—B1的大小。

方法一:
(Ⅰ)证明:在Rt△BB1D和Rt△B1C1C中,

BB1D∽△B1C1C,∠B1DB=∠B1CC1
又 ∠CB1D+∠B1CC1=90°
故 ∠CB1D+∠B1DB=90°
故 B1C⊥BD.·····················3分
又 正三棱柱ABC—A1B1C1,D为B1C1的中点。
A1D⊥平面B1C
A1DB1C
A1DB1D=D
所以 B1C⊥面A1BD。···················································6分
(Ⅱ)解:设E为AC的中点,连接BE.B1E。
在正三棱柱ABC—A1B1C1中,B1C=B1A,∴B1EACBEAC
即 ∠BEB1为二面角B—AC—B1的平面角·································9分


所以 二面角的大小为······································12分
方法二:
(Ⅰ)证明:设BC的中点为O,如图建立空间直角坐标系O—xyz
依题意有


故 
又 
所以

又 BDBA1=B
所以 B1C⊥面A1BD
(Ⅱ)依题意有

⊥平面ACB1⊥平面ABC
求得

所以 二面角的大小为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕,将△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE;
(2)求AC与面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥所有棱长均为2,则侧棱和底面所成的角是 (     )
A. 30°B. 45°C. 60 °D. 90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在三棱锥P-ABC中,⊿PAB是等边三角形,D,E分别为AB,PC的中点.
(1)在BC边上是否存在一点F,使得PB∥平面DEF
(2)若∠PAC=∠PBC=90º,证明:AB⊥PC
(3)在(2)的条件下,若AB=2AC=求三棱锥P-ABC的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分14分)
已知四边形ABCD是正方形,P是平面ABCD外一点,且PA=PB=PC=PD=AB=2,是棱的中点.建立适当的空间直角坐标系,利用空间向量方法解答以下问题:
(1)求证:
(2) 求证:
(3)求直线与直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知四棱锥PABCD的底面是菱形,∠BCD=60°,点EBC边的中点,ACDE交于点OPO⊥平面ABCD.
(Ⅰ)求证:PDBC
(Ⅱ)若AB=6,PC=6,求二面角PADC的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PBDE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
如图,已知中,平面
分别为的中点.
(1)求证:平面平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图, ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.

(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.

查看答案和解析>>

同步练习册答案