【题目】已知圆经过点、,并且直线: 平分圆.
(Ⅰ)求圆的方程;
(Ⅱ)若过点,且斜率为的直线与圆有两个不同的交点.
(ⅰ)求实数的取值范围;
(ⅱ)若,求的值.
【答案】(Ⅰ);(Ⅱ)(ⅰ),(ⅱ).
【解析】试题分析:(Ⅰ)确定圆需要三个条件,求圆方程可用待定系数法或直接法,此处是充分运用平几知识,求出圆心和半径,直接写方程;(Ⅱ)直线与圆的关系既可用几何法,也可运用代数法,这里两种方法都用了,感受一下,何时用何法的内在规律,韦达定理一定要和判别式结合使用,否则易犯错.
试题解析:(Ⅰ)线段的中点, ,故线段的中垂线方程为,即.
因为圆经过两点,故圆心在线段的中垂线上.
又因为直线: 平分圆,所以直线经过圆心.
由解得,即圆心的坐标为,而圆的半径,所以圆的方程为: 5分
(Ⅱ)直线的方程为.
圆心到直线的距离,
(ⅰ)由题意得,两边平方整理得:
解之得8分
(ⅱ)将直线的方程与圆的方程组成方程组得: 消去,整理得
10分
设,则由根与系数的关系可得:
,
而
所以
12分
故有,解得.经检验知,此时有,所以14分
科目:高中数学 来源: 题型:
【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从後表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?翻译如下:要测量海岛上一座山峰的高度,立两根高三丈的标杆和,前后两竿相距步,使后标杆杆脚与前标杆杆脚与山峰脚在同一直线上,从前标杆杆脚退行步到,人眼著地观测到岛峰,、、、三点共线,从后标杆杆脚退行步到,人眼著地观测到岛峰,、、三点也共线,则山峰的高度__________步.(古制步尺,里丈尺步)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片。当初向各地作了广告推广,同时广告对销售收益也有影响。在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;
(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,并将各地销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:百万元) | 2 | 3 | 2 | 7 |
表中的数据显示,与之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为 , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数为上的偶函数”为事件,求事件的概率;
(2)求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com