精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义域为R的单调减函数,且是奇函数,当x>0时,f(x)=
x3
-2x

(1)求f(x)的解析式;
(2)解关于t的不等式f(t2-2t)+f(2t2-5)<0.
分析:(1)由定义域为R的函数f(x)是奇函数,知f(0)=0.当x<0时,f(-x)=
-x
3
-2-x
,由函数f(x)是奇函数,知f(x)=
x
3
+2-x
,由此能求出f(x)的解析式.
(2)由f(1)=-
5
3
<f(0)=0
且f(x)在R上单调,知f(x)在R上单调递减,由f(t2-2t)+f(2t2-5)<0,得f(t2-2t)<-f(2t2-5),再由函数的奇偶性及单调性能求出实数t的取值范围.
解答:解:(1)∵定义域为R的函数f(x)是奇函数,
∴f(0)=0,
当x<0时,-x>0,
f(-x)=
-x
3
-2-x

又∵函数f(x)是奇函数,
∴f(-x)=-f(x),
f(x)=
x
3
+2-x

综上所述f(x)=
x
3
-2x
(x>0) 
0(x=0) 
x
3
+2-x
(x<0) 

(2)∵f(1)=-
5
3
<f(0)=0

且f(x)在R上单调,
∴f(x)在R上单调递减,
由f(t2-2t)+f(2t2-5)<0
得f(t2-2t)<-f(2t2-5),
∵f(x)是奇函数,
∴f(t2-2t)<f(5-2t2),
又∵f(x)是减函数,
∴t2-2t>5-2t2
即3t2-2t-5>0,
解得t>
5
3
或t<-1.
点评:本题考查函数解析式的求解及常用方法、函数单调性的判断与证明等.解题时要认真审题,仔细解答,注意合理地进行等价转化,同时注意函数性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案