精英家教网 > 高中数学 > 题目详情
若等比数列{an}的各项都是正数,a1=3,a1+a2+a3=21,则a3+a4+a5的值为(  )
A、84B、63C、42D、21
分析:先利用
a1+a2+a3
a1
=1+q+q2求得q,进而利用等比数列的性质可知a3+a4+a5=(a1+a2+a3)•q2答案可得.
解答:解:设数列的公比为q,则
a1+a2+a3
a1
=1+q+q2=7,求得q=2或-3(舍负)
∴a3+a4+a5=(a1+a2+a3)•q2=21×4=84
故选A
点评:本题主要考查了等比数列的性质.解题基础是对等比数列的通项公式的熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和Sn满足:an+1=a1Sn+1(n∈N*),则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和S n=3×2n+a(a为常数),则
a
2
1
+
a
2
2
+
a
2
3
+…+
a
2
n
=
3(4n-1)
3(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前n项和为Sn,a2=6,S3=21,则公比q=
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设有数列{an},若存在M>0,使得对一切自然数n,都有|an|<M成立,则称数列{an}有界,下列结论中:
①数列{an}中,an=
1n
,则数列{an}有界;
②等差数列一定不会有界;
③若等比数列{an}的公比满足0<q<1,则{an}有界;
④等比数列{an}的公比满足0<q<1,前n项和记为Sn,则{Sn}有界.
其中一定正确的结论有
①③④
①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}的前项n和为Sn,且
S4
S2
=5,则
S8
S4
=
 

查看答案和解析>>

同步练习册答案