精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上横坐标为的点到焦点的距离为.

1)求抛物线的方程;

2若过点的直线与抛物线交于不同的两点且以为直径的圆过坐标原点,求的面积。

【答案】(1);(2

【解析】试题分析:1由抛物线上横坐标为的点到焦点的距离为可得 解得从而可得抛物线的方程;(2先讨论直线斜率不存在时的情况,当斜率存在时,设直线方程为联立,消去根据韦达定理、平面向量数量积公式以及弦长公式点到直线距离公式与三角形面积公式可求得的面积.

试题解析:(1)依题意: 解得,所以抛物线的方程为

(2)依题意:若直线斜率不存在时,直线与抛物线只有一个交点,不符合题意;

所以设直线方程为

联立,消去

所以

因为以为直径的圆过坐标原点,所以

所以

解得,点到直线的距离为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数处取得极值.

)求函数的解析式;

)求证:对于区间上任意两个自变量的值,都有

)若过点可作曲线的三条切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个线性回归方程,变量x增加1个单位时,y平均增加5个单位;

③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;

④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.

以上错误结论的个数为(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.

其中正确命题的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.

(1)求函数的极值;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了人,并将这人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过元):

消费金额(单位:百元)

频数

由频数分布表可以认为,该市大学生网络外卖消费金额(单位:元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值,.现从该市任取名大学生,记其中网络外卖消费金额恰在元至元之间的人数为,求的数学期望;

市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值元的饭卡,并推出一档勇闯关,送大奖的活动.规则是:在某张方格图上标有第格、第格、第格、、第格共个方格.棋子开始在第格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是,其中),若掷出正面,将棋子向前移动一格(从),若掷出反面,则将棋子向前移动两格(从.重复多次,若这枚棋子最终停在第格,则认为闯关成功,并赠送元充值饭卡;若这枚棋子最终停在第格,则认为闯关失败,不再获得其他奖励,活动结束.

①设棋子移到第格的概率为,求证:当时,是等比数列;

②若某大学生参与这档闯关游戏,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.

参考数据:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:

月收入(百元)

频数

20

40

60

40

20

20

认同超前消费的人数

8

16

28

21

13

16

(1)根据以上统计数据填写下面列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;

月收入不低于8000元

月收入低于8000元

总计

认同

不认同

总计

(2)若从月收入在的被调查对象中随机选取2人进行调查,求至少有1个人不认同“超前消费”的概率.

参考公式:(其中).

附表:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论上的单调性;

2)当时,若存在正实数,使得对,都有,求的取值范围..

查看答案和解析>>

同步练习册答案