连接椭圆 (a>b>0)的一个焦点和一个顶点得到的直线方程为x-2y+2=0,则该椭圆的离心率为( )
A. B. C. D.
科目:高中数学 来源: 题型:
(本小题满分14分)
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若,求直线l的倾斜角;
(ii)若点Q在线段AB的垂直平分线上,且.求的值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:选择题
已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏淮安范集中学高三第一次全真模拟数学试卷(解析版) 题型:解答题
(本小题满分16分)
如图,椭圆(a>b>0)的上、下两个顶点为A、B,直线l:,点P是椭圆上异于点A、B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为,BP所在的直线的斜率为.若椭圆的离心率为,且过点.
(1)求的值;
(2)求MN的最小值;
(3)随着点P的变化,以MN为直径的圆是否恒过定点,
若过定点,求出该定点,如不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010年高考试题(天津卷)解析版(文) 题型:解答题
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若,求直线l的倾斜角;
(ii)若点Q在线段AB的垂直平分线上,且.求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com