精英家教网 > 高中数学 > 题目详情
19.若函数$f(x)=\left\{\begin{array}{l}{log_2}x,({x>1})\\ f({x+5}),({x≤1})\end{array}\right.$,则f(-2016)=2.

分析 由f(x)=f(x+5)得f(-2016)=f(-2016+5×404)=f(4)即可.

解答 解:由x≤1时,有f(x)=f(x+5)得f(-2016)=f(-2016+5×404)=f(4)=2,
故答案为:2

点评 本题考查了分段函数求值,转化思想是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,y∈R,等式f(y-3)+f($\sqrt{4x-{x}^{2}-3}$)=0恒成立,则$\frac{y}{x}$的取值范围是[2-$\frac{2\sqrt{3}}{3}$.3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=kx+1(k>0)与y=$\frac{x+1}{x}$与图象的交点为A、B.则|$\overrightarrow{OA}+\overrightarrow{OB}$|的值(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正三棱锥的底面边长为$\sqrt{2}$,侧棱长为1,则此三棱锥的体积为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,…,$\frac{1}{10}$+$\frac{2}{10}$+$\frac{3}{10}$+…+$\frac{9}{10}$,…,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,那么数列{bn}的前n项和Sn为$\frac{4n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=Asin({ωx+φ})({A>0,ω>0,-\frac{π}{2}≤φ<\frac{π}{2}})$的最大值为$\sqrt{2}$,图象关于$x=\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π.
(1)求f(x)的解析式,并写出f(x)的单调增区间.
(2)若把f(x)的图象向左平移$\frac{π}{12}$个单位,横坐标伸长为原来的2倍得y=g(x)图象当x∈[0,1]时,试证明,g(x)≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a=ln$\frac{1}{2}$,b=sin$\frac{1}{2}$,c=2${\;}^{-\frac{1}{2}}$,则a,b,c按照从小到大排列为(  )
A.b<a<cB.a<b<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正方体ABCD-A1B1C1D1棱长为1,动点P在此正方体的表面上运动,且PA=r$(0<r<\sqrt{3})$,记点P的轨迹长度为f(r),则关于r的方程$f(r)=\frac{3π}{2}$的解集为$\{1,\sqrt{2}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一笔投资的回报方案为:第一天回报0.5元,以后每天的回报翻一番,则投资第x天与当天的投资回报y之间的函数关系为(  )
A.y=0.5x2,x∈N*B.y=2x,x∈N*C.y=2x-1,x∈N*D.y=2x-2,x∈N*

查看答案和解析>>

同步练习册答案